Moduli spaces of complex affine and dilation surfaces

被引:1
|
作者
Apisa, Paul [1 ]
Bainbridge, Matt [2 ]
Wang, Jane [3 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53703 USA
[2] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[3] Univ Maine, Dept Math & Stat, Orono, ME 04469 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2023年 / 2023卷 / 796期
关键词
CONNECTED COMPONENTS; SPIN;
D O I
10.1515/crelle-2023-0005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct moduli spaces of complex affine and dilation surfaces. Using ideas of Veech [W. A. Veech, Flat surfaces, Amer. J. Math. 115 (1993), no. 3, 589-689], we show that the moduli space A(g,n)(m/ of genus g affine surfaces with cone points of complex order m = (m(1) ... , m(n)/ is a holomorphic affine bundle over M-g,M-n, and the moduli space Dg,n(m/ of dilation surfaces is a covering space of M-g,M-n. We then classify the connected components of D-g,D-n(m/ and show that it is an orbifold-K(G, 1/, where G is the framed mapping class group of [A. Calderon and N. Salter, Framed mapping class groups and the monodromy of strata of Abelian differentials, preprint 2020].
引用
收藏
页码:229 / 243
页数:15
相关论文
共 50 条