Paired optogenetic and visual stimulation can change the orientation selectivity of visual cortex neurons

被引:1
作者
V. Smirnov, Ivan [1 ]
Malyshev, Alexey Y. [1 ]
机构
[1] RAS, Inst Higher Nervous Act & Neurophysiol, Moscow 117485, Russia
基金
俄罗斯科学基金会;
关键词
Neuron; Hebbian plasticity; Visual cortex; Optogenetics; Mice; SYNAPTIC PLASTICITY;
D O I
10.1016/j.bbrc.2023.01.058
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Synaptic plasticity is currently considered the main mechanism underlying the plastic modification of neural networks. The vast majority of studies of synaptic plasticity are carried out on reduced preparations, but the situation in vivo is fundamentally different from that in vitro. In this work, we used the Hebbian paradigm, which is known to induce long-term changes in synaptic strength in vitro, to manipulate the properties of a single pyramidal neuron in the mouse visual cortex. We have shown that optogenetic stimulation of a ChR2-expressing pyramidal neuron in the primary visual cortex of Thy-ChR2 mice paired with the presentation of a visual stimulus of non-optimal orientation induces long-term changes in the properties of the receptive field, manifested in alteration of the orientation selectivity of the cell. Non-paired stimulation did not lead to changes in the properties of the receptive field of the neuron during the experiment. Thus, we have demonstrated the role of associative plasticity in the dynamic organization of the receptive fields of neurons in the visual cortex. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:63 / 69
页数:7
相关论文
共 19 条
[1]   Spike timing-dependent plasticity: A Hebbian learning rule [J].
Caporale, Natalia ;
Dan, Yang .
ANNUAL REVIEW OF NEUROSCIENCE, 2008, 31 :25-46
[2]   Heterosynaptic Plasticity Prevents Runaway Synaptic Dynamics [J].
Chen, Jen-Yung ;
Lonjers, Peter ;
Lee, Christopher ;
Chistiakova, Marina ;
Volgushev, Maxim ;
Bazhenov, Maxim .
JOURNAL OF NEUROSCIENCE, 2013, 33 (40) :15915-15929
[3]   Homeostatic role of heterosynaptic plasticity: models and experiments [J].
Chistiakova, Marina ;
Bannon, Nicholas M. ;
Chen, Jen-Yung ;
Bazhenov, Maxim ;
Volgushev, Maxim .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2015, 9
[4]   Temporal constraints in associative synaptic plasticity in hippocampus and neocortex [J].
Debanne, D ;
Shulz, DE ;
Fregnac, Y .
CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 1995, 73 (09) :1295-1311
[5]   Activity-dependent regulation of 'on' and 'off' responses in cat visual cortical receptive fields [J].
Debanne, D ;
Shulz, DE ;
Frégnac, Y .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 508 (02) :523-548
[6]   Locally coordinated synaptic plasticity of visual cortex neurons in vivo [J].
El-Boustani, Sami ;
Ip, Jacque P. K. ;
Breton-Provencher, Vincent ;
Knott, Graham W. ;
Okuno, Hiroyuki ;
Bito, Haruhiko ;
Sur, Mriganka .
SCIENCE, 2018, 360 (6395) :1349-1354
[7]   A CELLULAR ANALOG OF VISUAL CORTICAL PLASTICITY [J].
FREGNAC, Y ;
SHULZ, D ;
THORPE, S ;
BIENENSTOCK, E .
NATURE, 1988, 333 (6171) :367-370
[8]  
Kampa BM, 2006, J PHYSIOL-LONDON, V574, P283, DOI 10.1113/jphysiol.2006.111062
[9]   Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons [J].
Larkum, ME ;
Zhu, JJ ;
Sakmann, B .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 533 (02) :447-466
[10]   Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs [J].
Markram, H ;
Lubke, J ;
Frotscher, M ;
Sakmann, B .
SCIENCE, 1997, 275 (5297) :213-215