Inhomogeneous Fokker-Planck equation from framework of Kaniadakis statistics

被引:3
|
作者
Gomez, Ignacio S. [1 ]
da Costa, Bruno G. [2 ]
dos Santos, Maike A. F. [3 ]
机构
[1] Univ Estadual Sudoeste Bahia, Dept Ciencias Exatas & Nat, BR 415, BR-45700000 Itapetinga, BA, Brazil
[2] Inst Fed Educ Ciencia & Tecnol Sertao Pernambucano, BR-56316686 Petrolina, PE, Brazil
[3] Pontificia Univ Catolica Rio de Janeiro, Dept Phys, Rua Marques de Sao Vicente 225, BR-22451900 Rio de Janeiro, Brazil
关键词
-deformation; -deformed space and calculus; -deformed FPE; Inhomogeneous diffusion; ANOMALOUS DIFFUSION; H-THEOREM; SPACE; LANGEVIN; ALGEBRA; MODEL; MASS;
D O I
10.1016/j.cnsns.2023.107131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study an inhomogeneous Fokker-Planck equation (FPE) emerging in the framework of Kaniadakis statistics. The resultant FPE presents the features: (a) the solution is an special case of the Johnson's SU-distribution as the response of the system to a delta form solicitation, (b) the mean standard deviation increases exponentially with a characteristic time depending on the deformation parameter Kappa; (c) the associated Kappa-deformed entropy functional is obtained assuming the validity of H-Theorem in Kappa-deformed space with the entropy contribution of the medium in terms of the deformation; and (d) the deformed derivatives carry the information about the inhomogeneities. Homogeneous diffusion is recovered in the limit of null deformation, and the results are generalized to the two-dimensional case with the presence of two deformation parameters Kappa 1, Kappa 2 controlling inhomogeneities in the directions x and y.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Fokker-Planck equation for fractional systems
    Tarasov, Vasily E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (06): : 955 - 967
  • [42] Fokker-Planck equation on metric graphs
    Matrasulov, J.
    Sabirov, K.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 608
  • [43] Approximate solution for Fokker-Planck equation
    Araujo, M. T.
    Drigo Filho, E.
    CONDENSED MATTER PHYSICS, 2015, 18 (04)
  • [44] Local fractional Fokker-Planck equation
    Phys Rev Lett, 2 (214):
  • [45] FUNCTIONAL INTEGRALS AND THE FOKKER-PLANCK EQUATION
    LANGOUCHE, F
    ROEKAERTS, D
    TIRAPEGUI, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1979, 53 (01): : 135 - 159
  • [46] A TORSIONAL FOKKER-PLANCK EQUATION FOR BUTANE
    EVANS, GT
    KNAUSS, DC
    JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (09): : 4647 - 4650
  • [47] Free energy and the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHYSICA D, 1997, 107 (2-4): : 265 - 271
  • [48] A General Solution of the Fokker-Planck Equation
    Araujo, M. T.
    Drigo Filho, E.
    JOURNAL OF STATISTICAL PHYSICS, 2012, 146 (03) : 610 - 619
  • [49] ON THE CURSE OF DIMENSIONALITY IN THE FOKKER-PLANCK EQUATION
    Kumar, Mrinal
    Chakravorty, Suman
    Junkins, John L.
    ASTRODYNAMICS 2009, VOL 135, PTS 1-3, 2010, 135 : 1781 - 1800
  • [50] HYPERSONIC EXPANSION OF THE FOKKER-PLANCK EQUATION
    FERNANDEZFERIA, R
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (02): : 394 - 402