Inhomogeneous Fokker-Planck equation from framework of Kaniadakis statistics

被引:3
|
作者
Gomez, Ignacio S. [1 ]
da Costa, Bruno G. [2 ]
dos Santos, Maike A. F. [3 ]
机构
[1] Univ Estadual Sudoeste Bahia, Dept Ciencias Exatas & Nat, BR 415, BR-45700000 Itapetinga, BA, Brazil
[2] Inst Fed Educ Ciencia & Tecnol Sertao Pernambucano, BR-56316686 Petrolina, PE, Brazil
[3] Pontificia Univ Catolica Rio de Janeiro, Dept Phys, Rua Marques de Sao Vicente 225, BR-22451900 Rio de Janeiro, Brazil
关键词
-deformation; -deformed space and calculus; -deformed FPE; Inhomogeneous diffusion; ANOMALOUS DIFFUSION; H-THEOREM; SPACE; LANGEVIN; ALGEBRA; MODEL; MASS;
D O I
10.1016/j.cnsns.2023.107131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study an inhomogeneous Fokker-Planck equation (FPE) emerging in the framework of Kaniadakis statistics. The resultant FPE presents the features: (a) the solution is an special case of the Johnson's SU-distribution as the response of the system to a delta form solicitation, (b) the mean standard deviation increases exponentially with a characteristic time depending on the deformation parameter Kappa; (c) the associated Kappa-deformed entropy functional is obtained assuming the validity of H-Theorem in Kappa-deformed space with the entropy contribution of the medium in terms of the deformation; and (d) the deformed derivatives carry the information about the inhomogeneities. Homogeneous diffusion is recovered in the limit of null deformation, and the results are generalized to the two-dimensional case with the presence of two deformation parameters Kappa 1, Kappa 2 controlling inhomogeneities in the directions x and y.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] FRACTIONAL FOKKER-PLANCK EQUATION
    Tristani, Isabelle
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (05) : 1243 - 1260
  • [32] INPAINTING WITH FOKKER-PLANCK EQUATION
    Ignat, Anca
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2019, 20 (03): : 225 - 233
  • [33] Nonlinear inhomogeneous Fokker-Planck equation within a generalized Stratonovich prescription
    Arenas, Zochil Gonzalez
    Barci, Daniel G.
    Tsallis, Constantino
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [34] Self-similar solution to the Fokker-Planck equation in inhomogeneous plasma
    Bychenkov, VY
    Rozmus, W
    Teshima, R
    PHYSICS OF PLASMAS, 2002, 9 (07) : 2872 - 2875
  • [35] FROM THE PERRON-FROBENIUS EQUATION TO THE FOKKER-PLANCK EQUATION
    BECK, C
    JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (5-6) : 875 - 894
  • [36] A TRANSIENT SOLUTION OF THE FOKKER-PLANCK EQUATION
    EATON, CF
    AIAA JOURNAL, 1964, 2 (11) : 2033 - 2034
  • [37] SEQUENCE SOLUTION TO FOKKER-PLANCK EQUATION
    MAYFIELD, WW
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (02) : 165 - 176
  • [38] NUMERICAL SOLUTION OF FOKKER-PLANCK EQUATION
    KULSRUD, RM
    SUN, YC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (10): : 1262 - 1262
  • [39] EIGENVALUES OF THE LORENTZ FOKKER-PLANCK EQUATION
    SHIZGAL, B
    JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (04): : 1948 - 1951
  • [40] DERIVATION AND APPLICATION OF FOKKER-PLANCK EQUATION
    CAUGHEY, TK
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1962, 34 (12): : 2000 - &