Inhomogeneous Fokker-Planck equation from framework of Kaniadakis statistics

被引:3
|
作者
Gomez, Ignacio S. [1 ]
da Costa, Bruno G. [2 ]
dos Santos, Maike A. F. [3 ]
机构
[1] Univ Estadual Sudoeste Bahia, Dept Ciencias Exatas & Nat, BR 415, BR-45700000 Itapetinga, BA, Brazil
[2] Inst Fed Educ Ciencia & Tecnol Sertao Pernambucano, BR-56316686 Petrolina, PE, Brazil
[3] Pontificia Univ Catolica Rio de Janeiro, Dept Phys, Rua Marques de Sao Vicente 225, BR-22451900 Rio de Janeiro, Brazil
关键词
-deformation; -deformed space and calculus; -deformed FPE; Inhomogeneous diffusion; ANOMALOUS DIFFUSION; H-THEOREM; SPACE; LANGEVIN; ALGEBRA; MODEL; MASS;
D O I
10.1016/j.cnsns.2023.107131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study an inhomogeneous Fokker-Planck equation (FPE) emerging in the framework of Kaniadakis statistics. The resultant FPE presents the features: (a) the solution is an special case of the Johnson's SU-distribution as the response of the system to a delta form solicitation, (b) the mean standard deviation increases exponentially with a characteristic time depending on the deformation parameter Kappa; (c) the associated Kappa-deformed entropy functional is obtained assuming the validity of H-Theorem in Kappa-deformed space with the entropy contribution of the medium in terms of the deformation; and (d) the deformed derivatives carry the information about the inhomogeneities. Homogeneous diffusion is recovered in the limit of null deformation, and the results are generalized to the two-dimensional case with the presence of two deformation parameters Kappa 1, Kappa 2 controlling inhomogeneities in the directions x and y.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] EIGENTHEORY OF INHOMOGENEOUS FOKKER-PLANCK EQUATION
    HARRIS, S
    MONROE, JL
    JOURNAL OF STATISTICAL PHYSICS, 1977, 17 (05) : 377 - 381
  • [2] GENERIC framework for the Fokker-Planck equation
    Hoyuelos, Miguel
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 442 : 350 - 358
  • [3] Lie Symmetries of the Nonlinear Fokker-Planck Equation Based on Weighted Kaniadakis Entropy
    Hirica, Iulia-Elena
    Pripoae, Cristina-Liliana
    Pripoae, Gabriel-Teodor
    Preda, Vasile
    MATHEMATICS, 2022, 10 (15)
  • [4] FOKKER-PLANCK EQUATION
    DESLOGE, EA
    AMERICAN JOURNAL OF PHYSICS, 1963, 31 (04) : 237 - &
  • [5] Copulas from the Fokker-Planck equation
    Choe, Hi Jun
    Ahn, Cheonghee
    Kim, Beom Jin
    Ma, Yong-Ki
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (02) : 519 - 530
  • [6] Semimartingales from the Fokker-Planck Equation
    Toshio Mikami
    Applied Mathematics and Optimization, 2006, 53 : 209 - 219
  • [7] Semimartingales from the Fokker-Planck equation
    Mikami, T
    APPLIED MATHEMATICS AND OPTIMIZATION, 2006, 53 (02): : 209 - 219
  • [8] Fick's law and Fokker-Planck equation in inhomogeneous environments
    Sattin, F.
    PHYSICS LETTERS A, 2008, 372 (22) : 3941 - 3945
  • [9] Fokker-Planck equation and subdiffusive fractional Fokker-Planck equation of bistable systems with sinks
    Chow, CW
    Liu, KL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 87 - 106
  • [10] BUBBLE STATISTICS IN AGED WET FOAMS AND THE FOKKER-PLANCK EQUATION
    Zimnyakov, D. A.
    Yuvchenko, S. A.
    Tzyipin, D. V.
    Samorodina, T. V.
    SARATOV FALL MEETING 2017: LASER PHYSICS AND PHOTONICS XVIII; AND COMPUTATIONAL BIOPHYSICS AND ANALYSIS OF BIOMEDICAL DATA IV, 2018, 10717