Restricted modules for gap-p Virasoro algebra and twisted modules for certain vertex algebras

被引:3
作者
Guo, Hongyan [1 ]
Xu, Chengkang [2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[2] Shangrao Normal Univ, Shangrao, Jiangxi, Peoples R China
关键词
Gap-p Virasoro algebra; Restricted module; Vertex algebra; Twisted module; Locally nilpotent; WHITTAKER MODULES; LIE-ALGEBRA; AFFINE; REPRESENTATIONS;
D O I
10.1016/j.jpaa.2023.107322
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies restricted modules of gap-p Virasoro algebra g(p) and their intrinsic connection to twisted modules of certain vertex algebras. We first establish an equivalence between the category of restricted g(p)-modules of level (l) under bar and the category of twisted modules of vertex algebra V-Np((l) under bar, 0), where N-p is a new Lie algebra, (l) under bar :=(l(0), 0, center dot center dot center dot, 0) is an element of C[p/2]+1, l(0) is an element of C is the action of the Virasoro center. Then we focus on the construction and classification of simple restricted g(p)-modules of level (l) under bar. More explicitly, we give a uniform construction of simple restricted g(p)-modules as induced modules. We present several equivalent characterizations of simple restricted g(p)-modules, as locally nilpotent (equivalently, locally finite) modules with respect to certain positive part of g(p). Moreover, simple restricted g(p)-modules of level (l) under bar are classified. They are either highest weight modules or simple induced modules. At the end, we exhibit several concrete examples of simple restricted g(p)-modules of level (l) under bar (including Whittaker modules). (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
[41]   Simple Heisenberg-Virasoro modules from Weyl algebra modules [J].
Li, Shujuan ;
Zhu, Junyi ;
Guo, Xiangqian .
JOURNAL OF ALGEBRA, 2024, 638 :682-719
[42]   Algebra of q-difference operators, affine vertex algebras, and their modules [J].
Guo, Hongyan .
JOURNAL OF ALGEBRA, 2021, 585 :69-88
[43]   Classification of simple smooth modules over the Heisenberg-Virasoro algebra [J].
Tan, Haijun ;
Yao, Yufeng ;
Zhao, Kaiming .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
[44]   GENERALIZED POLYNOMIAL MODULES OVER THE VIRASORO ALGEBRA [J].
Liu, Genqiang ;
Zhao, Yueqiang .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (12) :5103-5112
[45]   λ-Differential operators and λ-differential modules for the Virasoro algebra [J].
Liu, Xuewen ;
Guo, Li ;
Guo, Xiangqian .
LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (07) :1308-1324
[46]   A new family of modules over the Virasoro algebra [J].
Chen, Hongjia ;
Guo, Xiangqian .
JOURNAL OF ALGEBRA, 2016, 457 :73-105
[47]   Equivariant quasi modules at infinity for vertex Γ-algebras [J].
Li, Haisheng ;
Mu, Qiang .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (11)
[48]   FUSION RULES AMONG θ-TWISTED MODULES FOR LATTICE VERTEX OPERATOR ALGEBRAS VL [J].
Nguyen, Danquynh .
OSAKA JOURNAL OF MATHEMATICS, 2022, 59 (01) :217-234
[49]   Quantum vertex F((t))-algebras and their modules [J].
Li, Haisheng .
JOURNAL OF ALGEBRA, 2010, 324 (09) :2262-2304
[50]   Simple toroidal vertex algebras and their irreducible modules [J].
Kong, Fei ;
Li, Haisheng ;
Tan, Shaobin ;
Wang, Qing .
JOURNAL OF ALGEBRA, 2015, 440 :264-316