Generalized n-Dimensional Rigid Registration: Theory and Applications

被引:1
作者
Wu, Jin [1 ]
Wang, Miaomiao [2 ]
Fourati, Hassen [3 ,4 ]
Li, Hui [5 ]
Zhu, Yilong [1 ]
Zhang, Chengxi [6 ]
Jiang, Yi [7 ]
Hu, Xiangcheng [1 ]
Liu, Ming [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
[2] Univ Western Ontario, Dept Elect & Comp Engn, London, ON N6A 3K7, Canada
[3] Univ Grenoble Alpes, GIPSA Lab, CNRS, F-38400 Grenoble, France
[4] INRIA, Grenoble, France
[5] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214126, Jiangsu, Peoples R China
[6] Harbin Inst Technol, Sch Elect & Informat Engn, Shenzhen 518055, Peoples R China
[7] City Univ Hong Kong, Dept Biomed Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty; Quaternions; Optimization; Covariance matrices; Space vehicles; Singular value decomposition; Rotation measurement; Covariance analysis; navigation; point-cloud registration; rigid transformation; robotic perception; QUATERNION ATTITUDE ESTIMATOR; ITERATIVE MATCHING METHOD; HAND-EYE CALIBRATION; COMPLEMENTARY FILTERS; POSE ESTIMATION; ALGORITHM; ICP; AX; PARAMETERS; ROBUST;
D O I
10.1109/TCYB.2022.3168938
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The generalized rigid registration problem in high-dimensional Euclidean spaces is studied. The loss function is minimized with an equivalent error formulation by the Cayley formula. The closed-form linear least-square solution to such a problem is derived which generates the registration covariances, i.e., uncertainty information of rotation and translation, providing quite accurate probabilistic descriptions. Simulation results indicate the correctness of the proposed method and also present its efficiency on computation-time consumption, compared with previous algorithms using singular value decomposition (SVD) and linear matrix inequality (LMI). The proposed scheme is then applied to an interpolation problem on the special Euclidean group SE(n) with covariance-preserving functionality. Finally, experiments on covariance-aided Lidar mapping show practical superiority in robotic navigation.
引用
收藏
页码:927 / 940
页数:14
相关论文
共 64 条
  • [21] On-Manifold Preintegration for Real-Time Visual-Inertial Odometry
    Forster, Christian
    Carlone, Luca
    Dellaert, Frank
    Scaramuzza, Davide
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (01) : 1 - 21
  • [22] Complete solution classification for the Perspective-Three-Point problem
    Gao, XS
    Hou, XR
    Tang, JL
    Cheng, HF
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (08) : 930 - 943
  • [23] MAV Attitude Determination by Vector Matching
    Gebre-Egziabher, Demoz
    Elkaim, Gabriel H.
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2008, 44 (03) : 1012 - 1028
  • [24] Vision meets robotics: The KITTI dataset
    Geiger, A.
    Lenz, P.
    Stiller, C.
    Urtasun, R.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) : 1231 - 1237
  • [25] Nonlinear Pose Filters on the Special Euclidean Group SE(3) With Guaranteed Transient and Steady-State Performance
    Hashim, Hashim A.
    Brown, Lyndon J.
    McIsaac, Kenneth
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (05): : 2949 - 2962
  • [26] Nonlinear Stochastic Attitude Filters on the Special Orthogonal Group 3: Ito and Stratonovich
    Hashim, Hashim A.
    Brown, Lyndon J.
    McIsaac, Kenneth
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (09): : 1853 - 1865
  • [27] GpoSolver: a Matlab/C plus plus toolbox for global polynomial optimization
    Heller, Jan
    Pajdla, Tomas
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (02) : 405 - 434
  • [28] CLOSED-FORM SOLUTION OF ABSOLUTE ORIENTATION USING UNIT QUATERNIONS
    HORN, BKP
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (04): : 629 - 642
  • [29] On the Covariance of X in AX = XB
    Huy Nguyen
    Quang-Cuong Pham
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2018, 34 (06) : 1651 - 1658
  • [30] Robust Point Set Registration Using Signature Quadratic Form Distance
    Li, Liang
    Yang, Ming
    Wang, Chunxiang
    Wang, Bing
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (05) : 2097 - 2109