Hybrid Quantum Vision Transformers for Event Classification in High Energy Physics

被引:3
作者
Unlu, Eyup B. [1 ]
Cara, Marcal Comajoan [2 ]
Dahale, Gopal Ramesh [3 ]
Dong, Zhongtian [4 ]
Forestano, Roy T. [1 ]
Gleyzer, Sergei [5 ]
Justice, Daniel [6 ]
Kong, Kyoungchul [4 ]
Magorsch, Tom [7 ]
Matchev, Konstantin T. [1 ]
Matcheva, Katia [1 ]
机构
[1] Univ Florida, Inst Fundamental Theory, Phys Dept, Gainesville, FL 32611 USA
[2] Univ Politecn Cataluna, Dept Signal Theory & Commun, Barcelona 08034, Spain
[3] Indian Inst Technol Bhilai, Bhilai 491001, Chhattisgarh, India
[4] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
[5] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
[6] Carnegie Mellon Univ, Software Engn Inst, 4500 Fifth Ave, Pittsburgh, PA 15213 USA
[7] Tech Univ Munich, Phys Dept, James Franck Str 1, D-85748 Garching, Germany
关键词
quantum computing; deep learning; quantum machine learning; vision transformers; supervised learning; classification; large hadron collider;
D O I
10.3390/axioms13030187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Models based on vision transformer architectures are considered state-of-the-art when it comes to image classification tasks. However, they require extensive computational resources both for training and deployment. The problem is exacerbated as the amount and complexity of the data increases. Quantum-based vision transformer models could potentially alleviate this issue by reducing the training and operating time while maintaining the same predictive power. Although current quantum computers are not yet able to perform high-dimensional tasks, they do offer one of the most efficient solutions for the future. In this work, we construct several variations of a quantum hybrid vision transformer for a classification problem in high-energy physics (distinguishing photons and electrons in the electromagnetic calorimeter). We test them against classical vision transformer architectures. Our findings indicate that the hybrid models can achieve comparable performance to their classical analogs with a similar number of parameters.
引用
收藏
页数:13
相关论文
共 35 条
[1]  
Albrecht Johannes, 2019, Computing and Software for Big Science, V3, DOI [10.1007/s41781-019-0031-6, 10.1007/s41781-018-0018-8, 10.1007/s41781-018-0018-8]
[2]   End-to-End Event Classification of High-Energy Physics Data [J].
Andrews, M. ;
Paulini, M. ;
Gleyzer, S. ;
Poczos, B. .
18TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2017), 2018, 1085
[3]   The CMS ECAL performance with examples [J].
Benaglia, A. .
JOURNAL OF INSTRUMENTATION, 2014, 9
[4]  
Bradbury J., JAX COMPOSABLE TRANS
[5]  
cern, CMS Heavy-Ion Public Physics Results
[6]   Description and performance of track and primary-vertex reconstruction with the CMS tracker [J].
Chatrchyan, S. ;
Khachatryan, V. ;
Sirunyan, A. M. ;
Tumasyan, A. ;
Adam, W. ;
Bergauer, T. ;
Dragicevic, M. ;
Eroe, J. ;
Fabjan, C. ;
Friedl, M. ;
Fruehwirth, R. ;
Ghete, V. M. ;
Hartl, C. ;
Hoermann, N. ;
Hrubec, J. ;
Jeitler, M. ;
Kiesenhofer, W. ;
Knuenz, V. ;
Krammer, M. ;
Kraetschmer, I. ;
Liko, D. ;
Mikulec, I. ;
Rabady, D. ;
Rahbaran, B. ;
Rohringer, H. ;
Schoefbeck, R. ;
Strauss, J. ;
Taurok, A. ;
Treberer-Treberspurg, W. ;
Waltenberger, W. ;
Wulz, C. -E. ;
Mossolov, V. ;
Shumeiko, N. ;
Gonzalez, J. Suarez ;
Alderweireldt, S. ;
Bansal, M. ;
Bansal, S. ;
Beaumont, W. ;
Cornelis, T. ;
De Wolf, E. A. ;
Janssen, X. ;
Knutsson, A. ;
Luyckx, S. ;
Mucibello, L. ;
Ochesanu, S. ;
Roland, B. ;
Rougny, R. ;
Van Haevermaet, H. ;
Van Mechelen, P. ;
Van Remortel, N. .
JOURNAL OF INSTRUMENTATION, 2014, 9
[7]   The CMS experiment at the CERN LHC [J].
Chatrchyan, S. ;
Hmayakyan, G. ;
Khachatryan, V. ;
Sirunyan, A. M. ;
Adam, W. ;
Bauer, T. ;
Bergauer, T. ;
Bergauer, H. ;
Dragicevic, M. ;
Eroe, J. ;
Friedl, M. ;
Fruehwirth, R. ;
Ghete, V. M. ;
Glaser, P. ;
Hartl, C. ;
Hoermann, N. ;
Hrubec, J. ;
Haensel, S. ;
Jeitler, M. ;
Kastner, K. ;
Krammer, M. ;
de Abril, I. Magrans ;
Markytan, M. ;
Mikulec, I. ;
Neuherz, B. ;
Noebauer, T. ;
Oberegger, M. ;
Padrta, M. ;
Pernicka, M. ;
Porth, P. ;
Rohringer, H. ;
Schmid, S. ;
Schreiner, T. ;
Stark, R. ;
Steininger, H. ;
Strauss, J. ;
Taurok, A. ;
Uhl, D. ;
Waltenberger, W. ;
Walzel, G. ;
Widl, E. ;
Wulz, C. -E. ;
Petrov, V. ;
Prosolovich, V. ;
Chekhovsky, V. ;
Dvornikov, O. ;
Emeliantchik, I. ;
Litomin, A. ;
Makarenko, V. ;
Marfin, I. .
JOURNAL OF INSTRUMENTATION, 2008, 3 (08)
[8]  
Choromanski K, 2021, Arxiv, DOI arXiv:2009.14794
[9]  
Dao T, 2022, Arxiv, DOI [arXiv:2205.14135, DOI 10.48550/ARXIV.2205.14135]
[10]  
Dosovitskiy A., 2021, P 2021 INT C LEARNIN