DTox: A deep neural network-based in visio lens for large scale toxicogenomics data

被引:0
作者
Hasel, Takeshi [1 ,2 ,3 ,4 ,5 ]
Ghosh, Samik [1 ]
Aisaki, Ken-ichi [6 ]
Kitajima, Satoshi [6 ]
Kanno, Jun [1 ,6 ,7 ]
Kitano, Hiroaki [1 ,8 ]
Yachie, Ayako [1 ,2 ]
机构
[1] Syst Biol Inst, Saisei Ikedayama Bldg,5-10-25 Higashi Gotanda Shin, Tokyo 1410022, Japan
[2] SBXBioSciences Inc, 1600-925 West Georgia St, Vancouver, BC V6C 3L2, Canada
[3] Tokyo Med & Dent Univ, Inst Educ, 20E M&D Tower,1-5-45 Yushima,Bunkyo Ku, Tokyo 1138510, Japan
[4] Keio Univ, Fac Pharm, 1-5-30 Shibakoen,Minato Ku, Tokyo 1058512, Japan
[5] Osaka Univ, Ctr Math Modelling & Data Sci, 1-3,Machikaneyama Cho, Toyonaka, Osaka 5608531, Japan
[6] Natl Inst Hlth Sci NIHS, Ctr Biol Safety & Res CBSR, Div Cellular & Mol Toxicol, 3-25-26 Tonomachi,Kawasaki Ku, Kawasaki, Kanagawa 2109501, Japan
[7] Univ Tsukuba, Fac Med, 1-1-1 Tennodai, Tsukuba, Tochigi 3058575, Japan
[8] Okinawa Inst Sci & Technol GIST, lntegrated Open Syst Unit, Onna, Okinawa, Japan
关键词
Artificial intelligence; Deep learning; Toxicogenomics; Percellome; CLASSIFICATION; TOXICITY; IMAGE;
D O I
暂无
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
With the advancement of large-scale omics technologies, particularly transcriptomics data sets on drug and treatment response repositories available in public domain, toxicogenomics has emerged as a key field in safety pharmacology and chemical risk assessment. Traditional statistics -based bioinformatics analysis poses challenges in its application across multidimensional toxicogenomic data, including administration time, dosage, and gene expression levels. Motivated by the visual inspection workflow of field experts to augment their efficiency of screening significant genes to derive meaningful insights, together with the ability of deep neural architectures to learn the image signals, we developed DTox, a deep neural network -based in visio approach. Using the Percellome toxicogenomics database, instead of utilizing the numerical gene expression values of the transcripts (gene probes of the microarray) for dose -time combinations, DTox learned the image representation of 3D surface plots of distinct time and dosage data points to train the classifier on the experts' labels of gene probe significance. DTox outperformed statistical threshold -based bioinformatics and machine learning approaches based on numerical expression values. This result shows the ability of image -driven neural networks to overcome the limitations of classical numeric value -based approaches. Further, by augmenting the model with explainability modules, our study showed the potential to reveal the visual analysis process of human experts in toxicogenomics through the model weights. While the current work demonstrates the application of the DTox model in toxicogenomic studies, it can be further generalized as an in visio approach for multi -dimensional numeric data with applications in various fields in medical data sciences.
引用
收藏
页码:105 / 115
页数:11
相关论文
共 28 条
[1]   Detection of signs of disease in external photographs of the eyes via deep learning [J].
Babenko, Boris ;
Mitani, Akinori ;
Traynis, Ilana ;
Kitade, Naho ;
Singh, Preeti ;
Maa, April Y. ;
Cuadros, Jorge ;
Corrado, Greg S. ;
Peng, Lily ;
Webster, Dale R. ;
Varadarajan, Avinash ;
Hammel, Naama ;
Liu, Yun .
NATURE BIOMEDICAL ENGINEERING, 2022, 6 (12) :1370-+
[2]   Network and Pathway Analysis of Toxicogenomics Data [J].
Barel, Gal ;
Herwig, Ralf .
FRONTIERS IN GENETICS, 2018, 9
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[5]   Comparative Toxicogenomics Database (CTD): update 2021 [J].
Davis, Allan Peter ;
Grondin, Cynthia J. ;
Johnson, Robin J. ;
Sciaky, Daniela ;
Wiegers, Jolene ;
Wiegers, Thomas C. ;
Mattingly, Carolyn J. .
NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) :D1138-D1143
[6]   Deep learning-enabled medical computer vision [J].
Esteva, Andre ;
Chou, Katherine ;
Yeung, Serena ;
Naik, Nikhil ;
Madani, Ali ;
Mottaghi, Ali ;
Liu, Yun ;
Topol, Eric ;
Dean, Jeff ;
Socher, Richard .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[7]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[8]  
Fu RG, 2020, Arxiv, DOI arXiv:2008.02312
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Open TG-GATEs: a large-scale toxicogenomics database [J].
Igarashi, Yoshinobu ;
Nakatsu, Noriyuki ;
Yamashita, Tomoya ;
Ono, Atsushi ;
Ohno, Yasuo ;
Urushidani, Tetsuro ;
Yamada, Hiroshi .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D921-D927