SCALING POSITIVE DEFINITE MATRICES TO ACHIEVE PRESCRIBED EIGENPAIRS

被引:0
作者
Hutchinson, George [1 ]
机构
[1] Mohawk Coll, 135 Fennell Ave W, Hamilton, ON, Canada
来源
OPERATORS AND MATRICES | 2023年 / 17卷 / 04期
关键词
Diagonal matrix scaling; positive definite matrices; doubly stochastic; Sinkhorn's theorem;
D O I
10.7153/oam-2023-17-64
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the problem of scaling a given positive definite matrix A to achieve a prescribed eigenpair (lambda,v), by way of a diagonal scaling D*AD. We consider the case where D is required to be positive, as well as the case where D is allowed to be complex. We generalize a few classical results, and then provide a partial answer to a question of Pereira and Boneng regarding the number of complex scalings of a given 3 x 3 positive definite matrix A.
引用
收藏
页码:967 / 994
页数:28
相关论文
共 12 条
[1]   DIAGONAL EQUIVALENCE OF A NONNEGATIVE MATRIX TO A STOCHASTIC MATRIX [J].
BRUALDI, RA ;
PARTER, SV ;
SCHNEIDER, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1966, 16 (01) :31-&
[2]  
DIETRICH O, 2016, Symmetric 3x3 matrices with repeated eigenvalues
[3]  
GATHMANN A, 2018, Course Notes
[4]   On the cardinality of complex matrix scalings [J].
Hutchinson, George .
SPECIAL MATRICES, 2016, 4 (01) :141-150
[5]   On complex matrix scalings of extremal permanent [J].
Hutchinson, George .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 522 :111-126
[6]  
Idel Martin., 2016, arXiv
[7]   Scaling of symmetric matrices by positive diagonal congruence [J].
Johnson, Charles R. ;
Reams, Robert .
LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (02) :123-140
[8]   SCALING OF MATRICES TO ACHIEVE SPECIFIED ROW AND COLUMN SUMS [J].
MARSHALL, AW ;
OLKIN, I .
NUMERISCHE MATHEMATIK, 1968, 12 (01) :83-&
[10]  
Parlett B.N., 1998, The Symmetric Eigenvalue Problem