Generative Datalog and Answer Set Programming - Extended Abstract

被引:0
作者
Alviano, Mario [1 ]
机构
[1] Univ Calabria, DEMACS, Via Bucci 30-B, I-87036 Arcavacata Di Rende, CS, Italy
来源
LOGICS IN ARTIFICIAL INTELLIGENCE, JELIA 2023 | 2023年 / 14281卷
关键词
Answer Set Programming; Datalog; probabilistic reasoning; non-measurable sets; stable model semantics; LOGIC; INFERENCE; LANGUAGE;
D O I
10.1007/978-3-031-43619-2_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative Datalog is an extension of Datalog that incorporates constructs for referencing parameterized probability distributions. This augmentation transforms the evaluation of a Generative Datalog program into a stochastic process, resulting in a declarative formalism suitable for modeling and analyzing other stochastic processes. This work provides an introduction to Generative Datalog through the lens of Answer Set Programming (ASP), demonstrating how Generative Datalog can explain the output of ASP systems that include @-terms referencing probability distributions. From a theoretical point of view, extending the semantics of Generative Datalog to stable negation proved to be challenging due to the richness of ASP relative to Datalog in terms of linguistic constructs. On a more pragmatic side, the connection between the two formalisms lays the foundation for implementing Generative Datalog atop efficient ASP systems, making it a practical solution for real-world applications.
引用
收藏
页码:3 / 10
页数:8
相关论文
共 29 条
[1]  
Alviano M., 2023, PODS
[2]   The ASP System DLV2 [J].
Alviano, Mario ;
Calimeri, Francesco ;
Dodaro, Carmine ;
Fusca, Davide ;
Leone, Nicola ;
Perri, Simona ;
Ricca, Francesco ;
Veltri, Pierfrancesco ;
Zangari, Jessica .
LOGIC PROGRAMMING AND NONMONOTONIC REASONING, LPNMR 2017, 2017, 10377 :215-221
[3]   Probabilistic reasoning with answer sets [J].
Baral, Chitta ;
Gelfond, Michael ;
Rushton, Nelson .
THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2009, 9 :57-144
[4]   Declarative Probabilistic Programming with Datalog [J].
Barany, Vince ;
Ten Cate, Balder ;
Kimelfeld, Benny ;
Olteanu, Dan ;
Vagena, Zografoula .
ACM TRANSACTIONS ON DATABASE SYSTEMS, 2017, 42 (04)
[5]   CLP(BN): Constraint logic programming for probabilistic knowledge [J].
Santos Costa, Vítor ;
Page, David ;
Cussens, James .
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2008, 4911 LNAI :156-188
[6]   The joy of Probabilistic Answer Set Programming: Semantics, complexity, expressivity, inference [J].
Cozman, Fabio Gagliardi ;
Maua, Denis Deratani .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 125 :218-239
[7]  
De Raedt L, 2007, 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2468
[8]  
Domingos P., 2009, Synthesis Lectures on Artificial Intelligence and Machine Learning
[9]   Inference and learning in probabilistic logic programs using weighted Boolean formulas [J].
Fierens, Daan ;
Van den Broeck, Guy ;
Renkens, Joris ;
Shterionov, Dimitar ;
Gutmann, Bernd ;
Thon, Ingo ;
Janssens, Gerda ;
De Raedt, Luc .
THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2015, 15 :358-401
[10]   Multi-shot ASP solving with clingo [J].
Gebser, Martin ;
Kaminski, Roland ;
Kaufmann, Benjamin ;
Schaub, Torsten .
THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2019, 19 (01) :27-82