Vision-based food nutrition estimation via RGB-D fusion network

被引:21
作者
Shao, Wenjing [1 ]
Min, Weiqing [2 ,3 ]
Hou, Sujuan [1 ]
Luo, Mengjiang [2 ,3 ]
Li, Tianhao [2 ,3 ]
Zheng, Yuanjie [1 ]
Jiang, Shuqiang [2 ,3 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250358, Shandong, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Food nutrient; Nutrition estimation; Food composition; Deep learning; RGB-D fusion; DIETARY;
D O I
10.1016/j.foodchem.2023.136309
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
With the development of deep learning technology, vision-based food nutrition estimation is gradually entering the public view for its advantage in accuracy and efficiency. In this paper, we designed one RGB-D fusion network, which integrated multimodal feature fusion (MMFF) and multi-scale fusion for visioin-based nutrition assessment. MMFF performed effective feature fusion by a balanced feature pyramid and convolutional block attention module. Multi-scale fusion fused different resolution features through feature pyramid network. Both enhanced feature representation to improve the performance of the model. Compared with state-of-the-art methods, the mean value of the percentage mean absolute error (PMAE) for our method reached 18.5%. The PMAE of calories and mass reached 15.0% and 10.8% via the RGB-D fusion network, improved by 3.8% and 8.1%, respectively. Furthermore, this study visualized the estimation results of four nutrients and verified the validity of the method. This research contributed to the development of automated food nutrient analysis (Code and models can be found at http://123.57.42.89/codes/RGB-DNet/nutrition.html).
引用
收藏
页数:10
相关论文
共 40 条
[1]   Health Effects of Overweight and Obesity in 195 Countries over 25 Years [J].
Afshin, Ashkan ;
Forouzanfar, Mohammad H. ;
Reitsma, Marissa B. ;
Sur, Patrick ;
Estep, Kara ;
Lee, Alex ;
Marczak, Laurie ;
Mokdad, Ali H. ;
Moradi-Lakeh, Maziar ;
Naghavi, Mohsen ;
Salama, Joseph S. ;
Vos, Theo ;
Abate, Kalkidan H. ;
Abbafati, Cristiana ;
Ahmed, Muktar B. ;
Al-Aly, Ziyad ;
Alkerwi, Ala'a ;
Al-Raddadi, Rajaa ;
Amare, Azmeraw T. ;
Amberbir, Alemayehu ;
Amegah, Adeladza K. ;
Amini, Erfan ;
Amrock, Stephen M. ;
Anjana, Ranjit M. ;
Arnlov, Johan ;
Asayesh, Hamid ;
Banerjee, Amitava ;
Barac, Aleksandra ;
Baye, Estifanos ;
Bennett, Derrick A. ;
Beyene, Addisu S. ;
Biadgilign, Sibhatu ;
Biryukov, Stan ;
Bjertness, Espen ;
Boneya, Dube J. ;
Campos-Nonato, Ismael ;
Carrero, Juan J. ;
Cecilio, Pedro ;
Cercy, Kelly ;
Ciobanu, Liliana G. ;
Cornaby, Leslie ;
Damtew, Solomon A. ;
Dandona, Lalit ;
Dandona, Rakhi ;
Dharmaratne, Samath D. ;
Duncan, Bruce B. ;
Eshrati, Babak ;
Esteghamati, Alireza ;
Feigin, Valery L. ;
Fernandes, Joao C. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 377 (01) :13-27
[2]   Deep Learning-Based Multimodal Data Fusion: Case Study in Food Intake Episodes Detection Using Wearable Sensors [J].
Bahador, Nooshin ;
Ferreira, Denzil ;
Tamminen, Satu ;
Kortelainen, Jukka .
JMIR MHEALTH AND UHEALTH, 2021, 9 (01)
[3]   Mean Absolute Percentage Error for regression models [J].
de Myttenaere, Arnaud ;
Golden, Boris ;
Le Grand, Benedicte ;
Rossi, Fabrice .
NEUROCOMPUTING, 2016, 192 :38-48
[4]   ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks [J].
Ding, Xiaohan ;
Guo, Yuchen ;
Ding, Guiguang ;
Han, Jungong .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :1911-1920
[5]   Image-Based Food Calorie Estimation Using Knowledge on Food Categories, Ingredients and Cooking Directions [J].
Ege, Takumi ;
Yanai, Keiji .
PROCEEDINGS OF THE THEMATIC WORKSHOPS OF ACM MULTIMEDIA 2017 (THEMATIC WORKSHOPS'17), 2017, :367-375
[6]   Methodological considerations and future insights for 24-hour dietary recall assessment in children [J].
Foster, Emma ;
Bradley, Jennifer .
NUTRITION RESEARCH, 2018, 51 :1-11
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]  
Juan T. M., 2017, NUTRIENTS, V9
[9]  
Kim W, 2021, PR MACH LEARN RES, V139
[10]   Precision nutrition: A systematic literature review [J].
Kirk, Daniel ;
Catal, Cagatay ;
Tekinerdogan, Bedir .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 133