Subcritical multitype Markov branching processes with immigration generated by Poisson random measures

被引:1
作者
Slavtchova-Bojkova, Maroussia [1 ,2 ,4 ]
Hyrien, Ollivier [3 ]
Yanev, Nikolay M. [2 ]
机构
[1] Sofia Univ St Kl Ohridski, Fac Math & Informat, Dept PSOR, Sofia, Bulgaria
[2] Bulgarian Acad Sci, Inst Math & Informat, Dept ORPS, Sofia, Bulgaria
[3] Fred Hutchinson Canc Ctr, Seattle, WA USA
[4] Sofia Univ St Kl Ohridski, Fac Math & Informat, Dept PSOR, 5 J Bourchier Blvd, Sofia 1164, Bulgaria
基金
美国国家卫生研究院;
关键词
Multitype branching processes; immigration; Poisson measures; limiting distributions; NONHOMOGENEOUS POISSON;
D O I
10.1080/03610926.2023.2205972
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate multitype subcritical Markov branching processes with immigration driven by Poisson random measures. Limiting distributions are established for various rates of the Poisson measures when they are asymptotically equivalent to exponential or regularly varying functions. Results analogous to a strong LLN are proved, and limiting normal distributions are obtained when the local intensity of the Poisson measure increases with time. When it decreases, conditional limiting distributions are established. When the intensity converges to a constant, a stationary limiting distribution is obtained. The asymptotic behavior of the first and second moments of the processes is also investigated.
引用
收藏
页码:5076 / 5091
页数:16
相关论文
共 41 条
[1]  
[Anonymous], 2005, Branching processes: variation, growth, and extinction of populations
[2]  
Asmussen S., 1983, Branching Processes
[3]  
Athreya K. B., 1972, Branching processes
[4]  
Badalbaev I., 1993, NON HOMOGENEOUS FLOW
[5]   ASYMPTOTIC BEHAVIOR OF PROJECTIONS OF SUPERCRITICAL MULTI-TYPE CONTINUOUS-STATE AND CONTINUOUS-TIME BRANCHING PROCESSES WITH IMMIGRATION [J].
Barczy, Matyas ;
Palau, Sandra ;
Pap, Gyula .
ADVANCES IN APPLIED PROBABILITY, 2021, 53 (04) :1023-1060
[6]   On Aggregation of Subcritical Galton-Watson Branching Processes with Regularly Varying Immigration [J].
Barczy, Matyas ;
Nedenyi, Fanni K. ;
Pap, Gyula .
LITHUANIAN MATHEMATICAL JOURNAL, 2020, 60 (04) :425-451
[7]  
Bingham N.H., 1987, Encycl. Math. Appl., V27
[8]  
Courant R., 1962, Methods of Mathematical Physics: Partial Differential Equations, V2
[9]   PROBLEM CONCERNING GENERALIZED AGE-DEPENDENT BRANCHING PROCESSES WITH IMMIGRATION [J].
DURHAM, SD .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (03) :1121-&
[10]   LIMIT THEOREMS FOR GALTON-WATSON PROCESS WITH TIME-DEPENDENT IMMIGRATION [J].
FOSTER, JH ;
WILLIAMS.JA .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 20 (03) :227-&