Methane Adsorption Characteristics Under In Situ Reservoir Conditions of the Wufeng-Longmaxi Shale in Southern Sichuan Basin, China: Implications for Gas Content Evaluation

被引:6
|
作者
Qian, Chao [1 ,2 ,3 ]
Li, Xizhe [2 ]
Zhang, Qing [1 ]
Li, Yanchao [1 ]
Shen, Weijun [3 ,4 ]
Xing, Hongchuan [1 ]
Shu, Pinghua [1 ]
Han, Lingling [2 ,5 ]
Cui, Yue [2 ,5 ]
Huang, Yize [2 ,5 ]
机构
[1] CNPC Chuanqing Drilling Engn Co Ltd, Shale Gas Explorat & Dev Dept, Chengdu 610051, Sichuan, Peoples R China
[2] Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
[3] Chinese Acad Sci, Inst Mech, Key Lab Mech Fluid Solid Coupling Syst, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
[5] Chinese Acad Sci, Inst Porous Flow & Fluid Mech, Langfang 065007, Peoples R China
基金
中国国家自然科学基金;
关键词
Wufeng-Longmaxi shale; In situ reservoir condition; Thermodynamic parameters; Water saturation; Adsorption capacity; PORE STRUCTURE CHARACTERISTICS; FRACTAL CHARACTERISTICS; GEOLOGICAL CONTROLS; NANOPORE STRUCTURE; EXPLORATION; MECHANISMS; PRESSURE; CAPACITY; TEMPERATURE; GENERATION;
D O I
10.1007/s11053-023-10189-1
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The accuracy of adsorbed gas content under actual in situ reservoir conditions is crucial for the evaluation of shale gas reserves. In this study, the characteristics of methane adsorption on the Wufeng-Longmaxi shale were investigated under a wide range of pressure (0-51 MPa) and actual in situ water saturation. Methane-shale adsorption exhibits the Gibbs excess adsorption phenomenon at high pressure. The excess adsorption amount needs be corrected to absolute adsorption amount, otherwise it will be seriously underestimated. The optimal supercritical methane adsorption model was determined by the corrected Akaike's Information Criterion method. The methane adsorption amount of shale samples ranged from 1.521 to 4.079 m(3)/t. Adsorption capacity was dominated by the total organic carbon content as well as micropore volume and total specific surface area. Additionally, pore volume and specific surface area were contributed mainly by abundant micropores associated with organic matter. Thermodynamic parameters revealed that the adsorption of methane on shale was an exothermic process. As the temperature increased from 40 to 80 degrees C, the methane adsorption capacity decreased from 4.27 to 2.99 m(3)/t, a 30% decrease. The actual in situ water saturation correlated primarily with clay content, regardless of clay types, and increased with clay content. The formation of an adsorbed water film and the blockage of pores for gas adsorption by clusters of water molecules significantly lowered the adsorption capacity. The relative difference in the adsorption capacity increased with water saturation, with the adsorption capacity of water-bearing shales decreasing by 21-84% at a water saturation of 30-71% compared to dry shales.
引用
收藏
页码:1111 / 1133
页数:23
相关论文
共 50 条
  • [1] Methane Adsorption Characteristics Under In Situ Reservoir Conditions of the Wufeng–Longmaxi Shale in Southern Sichuan Basin, China: Implications for Gas Content Evaluation
    Chao Qian
    Xizhe Li
    Qing Zhang
    Yanchao Li
    Weijun Shen
    Hongchuan Xing
    Pinghua Shu
    Lingling Han
    Yue Cui
    Yize Huang
    Natural Resources Research, 2023, 32 : 1111 - 1133
  • [2] Reservoir characteristics of different shale lithofacies and their effects on the gas content of Wufeng-Longmaxi Formation, southern Sichuan Basin, China
    Qian, Chao
    Li, Xizhe
    Zhang, Qing
    Shen, Weijun
    Guo, Wei
    Lin, Wei
    Han, Lingling
    Cui, Yue
    Huang, Yize
    Pei, Xiangyang
    Yu, Zhichao
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 225
  • [3] Cenozoic exhumation and shale-gas enrichment of the Wufeng-Longmaxi formation in the southern Sichuan basin, western China
    Liu, Wenping
    Wu, Juan
    Jiang, Hua
    Zhou, Zheng
    Luo, Chao
    Wu, Wei
    Li, Xiaojia
    Liu, Shugen
    Deng, Bin
    MARINE AND PETROLEUM GEOLOGY, 2021, 125
  • [4] Geological Characteristics and Controlling Factors of Deep Shale Gas Enrichment of the Wufeng-Longmaxi Formation in the Southern Sichuan Basin, China
    Li, Jing
    Li, Hu
    Yang, Cheng
    Wu, Yijia
    Gao, Zhi
    Jiang, Songlian
    LITHOSPHERE, 2022, 2022
  • [5] Deep shale gas in the Ordovician-Silurian Wufeng-Longmaxi formations of the Sichuan Basin, SW China: Insights from reservoir characteristics, preservation conditions and development strategies
    Nie, Haikuan
    Jin, Zhijun
    Li, Pei
    Katz, Barry Jay
    Dang, Wei
    Liu, Quanyou
    Ding, Jianghui
    Jiang, Shu
    Li, Donghui
    JOURNAL OF ASIAN EARTH SCIENCES, 2023, 244
  • [6] Petrophysical Characterization and Gas Accumulation of Wufeng-Longmaxi Shale Reservoir in Eastern Margin of Sichuan Basin, SW China
    Wang, Wei
    Li, Dahua
    Cheng, Lijun
    Zhang, Ye
    Wang, Jinxi
    Zhang, Zhiping
    Zhang, Hualian
    Guo, Dongxin
    Zhang, Yuelei
    Hua, Qing
    Liu, Jun
    GEOFLUIDS, 2022, 2022
  • [7] Investigation of methane sorption of overmature Wufeng-Longmaxi shale in the Jiaoshiba area, Eastern Sichuan Basin, China
    Hu, Haiyan
    Hao, Fang
    Guo, Xusheng
    Dai, Fangyao
    Lu, Yongchao
    Ma, Yiquan
    MARINE AND PETROLEUM GEOLOGY, 2018, 91 : 251 - 261
  • [8] Formation and evolution of shale overpressure in deep Wufeng-Longmaxi Formation in southern Sichuan basin and its influence on reservoir pore characteristics
    Sun, Shasha
    Shi, Zhensheng
    Dong, Dazhong
    Bai, Wenhua
    Wei, Lin
    Yin, Jia
    Qu, Jiajun
    FRONTIERS IN EARTH SCIENCE, 2024, 12
  • [9] Characteristics of In Situ Desorption Gas and their Relations to Shale Components: A Case Study of the Wufeng-Longmaxi Shales in Eastern Sichuan Basin, China
    Cao, Taotao
    Deng, Mo
    Pan, Anyang
    Wang, Qingtao
    Cao, Qinggu
    Liu, Hu
    Juanyi, Xiao
    LITHOSPHERE, 2023, 2023 (01)
  • [10] Fluid evolution and gas enrichment in the Wufeng-Longmaxi shale reservoirs of the eastern Sichuan Basin, SW China
    Luo, Tao
    Guo, Xiaowen
    He, Zhiliang
    Dong, Tian
    Tao, Ze
    Yang, Rui
    Wang, Keqing
    JOURNAL OF ASIAN EARTH SCIENCES, 2024, 259