A locking-free discontinuous Galerkin method for linear elastic Steklov eigenvalue problem

被引:3
作者
Li, Yanjun [1 ,2 ]
Bi, Hai [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Guizhou, Peoples R China
[2] Guizhou Univ Finance & Econ, Sch Big Data Applicat & Econ, Guiyang 550025, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Steklov-Lam? eigenvalue problem; Discontinuous Galerkin method; Linear elasticity; Locking free; A priori error estimate; FINITE-ELEMENT METHODS; INCOMPRESSIBLE ELASTICITY; A-PRIORI; APPROXIMATION;
D O I
10.1016/j.apnum.2023.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a discontinuous Galerkin finite element method of Nitsche's version for the Steklov eigenvalue problem in linear elasticity is presented. The a priori error estimates are analyzed under a low regularity condition, and the robustness with respect to nearly incompressible materials (locking-free) is proven. Furthermore, some numerical experiments are reported to show the effectiveness and robustness of the proposed method.(c) 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:21 / 41
页数:21
相关论文
共 49 条
  • [1] [Anonymous], 1991, Finite element methods
  • [2] [Anonymous], 2013, Theory and practice of finite elements
  • [3] [Anonymous], 1971, ABH MATH SEM HAMBURG
  • [4] High-order Discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes
    Antonietti, P. F.
    Mazzieri, I.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 342 : 414 - 437
  • [5] A HIGH-ORDER DISCONTINUOUS GALERKIN METHOD FOR THE PORO-ELASTO-ACOUSTIC PROBLEM ON POLYGONAL AND POLYHEDRAL GRIDS
    Antonietti, Paola F.
    Botti, Michele
    Mazzieri, Ilario
    Poltri, Simone Nati
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (01) : B1 - B28
  • [6] Unified analysis of discontinuous Galerkin methods for elliptic problems
    Arnold, DN
    Brezzi, F
    Cockburn, B
    Marini, LD
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) : 1749 - 1779
  • [7] A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations
    Bassi, F
    Rebay, S
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) : 267 - 279
  • [8] Bernardi C, 2002, MATH COMPUT, V71, P1371, DOI 10.1090/S0025-5718-01-01401-6
  • [9] THE NONCONFORMING CROUZEIX-RAVIART ELEMENT APPROXIMATION AND TWO-GRID DISCRETIZATIONS FOR THE ELASTIC EIGENVALUE PROBLEM*
    Bi, Hai
    Zhang, Xuqing
    Yang, Yidu
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (06): : 1041 - 1063
  • [10] Brenner S. C., 2007, MATH THEORY FINITE E