Deep Learning-Based Modeling of Drug-Target Interaction Prediction Incorporating Binding Site Information of Proteins

被引:17
作者
D'Souza, Sofia [1 ]
Prema, K. V. [2 ]
Balaji, S. [3 ]
Shah, Ronak [1 ]
机构
[1] Manipal Acad Higher Educ, Dept Comp Sci & Engn, Manipal, India
[2] Manipal Acad Higher Educ, Dept Comp Sci & Engn, Bengaluru, India
[3] Manipal Acad Higher Educ, Dept Biotechnol, Manipal, India
关键词
Drug-target interaction; Machine learning; Deep learning; Protein-ligand interaction; Sequence alignment; NETWORK; SYSTEM;
D O I
10.1007/s12539-023-00557-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chemogenomics, also known as proteochemometrics, covers various computational methods for predicting interactions between related drugs and targets on large-scale data. Chemogenomics is used in the early stages of drug discovery to predict the off-target effects of proteins against therapeutic candidates. This study aims to predict unknown ligand-target interactions using one-dimensional SMILES as inputs for ligands and binding site residues for proteins in a computationally efficient manner. We first formulate a Deep learning CNN model using one-dimensional SMILES for drugs and motif-rich binding pocket subsequences of proteins as inputs. We evaluate and compare the proposed deep learning model trained on expert-based features against shallow feature-based machine learning methods. The proposed method achieved better or similar performance on the MSE and AUPR metrics than the shallow methods. Additionally, We show that our deep learning model, DeepPS is computationally more efficient than the deep learning model trained on full-length raw sequences of proteins. We conclude that a beneficial research approach would be to integrate structural information of proteins for modeling drug-target interaction prediction of large datasets for more interpretability, high throughput, and broad applicability.
引用
收藏
页码:306 / 315
页数:10
相关论文
共 41 条
[1]   DeepCDA: deep cross-domain compound-protein affinity prediction through LSTM and convolutional neural networks [J].
Abbasi, Karim ;
Razzaghi, Parvin ;
Poso, Antti ;
Amanlou, Massoud ;
Ghasemi, Jahan B. ;
Masoudi-Nejad, Ali .
BIOINFORMATICS, 2020, 36 (17) :4633-4642
[2]   UniProt: the universal protein knowledgebase in 2021 [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Agivetova, Rahat ;
Ahmad, Shadab ;
Alpi, Emanuele ;
Bowler-Barnett, Emily H. ;
Britto, Ramona ;
Bursteinas, Borisas ;
Bye-A-Jee, Hema ;
Coetzee, Ray ;
Cukura, Austra ;
Da Silva, Alan ;
Denny, Paul ;
Dogan, Tunca ;
Ebenezer, ThankGod ;
Fan, Jun ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Hussein, Abdulrahman ;
Ignatchenko, Alexandr ;
Insana, Giuseppe ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lock, Antonia ;
Lopez, Rodrigo ;
Luciani, Aurelien ;
Luo, Jie ;
Lussi, Yvonne ;
Mac-Dougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Mishra, Alok ;
Moulang, Katie ;
Nightingale, Andrew ;
Oliveira, Carla Susana ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Rice, Daniel ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sampson, Joseph .
NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) :D480-D489
[3]   Polypharmacology modelling using proteochemometrics (PCM): recent methodological developments, applications to target families, and future prospects [J].
Cortes-Ciriano, Isidro ;
Ul Ain, Qurrat ;
Subramanian, Vigneshwari ;
Lenselink, Eelke B. ;
Mendez-Lucio, Oscar ;
IJzerman, Adriaan P. ;
Wohlfahrt, Gerd ;
Prusis, Peteris ;
Malliavin, Therese E. ;
van Westen, Gerard J. P. ;
Bender, Andreas .
MEDCHEMCOMM, 2015, 6 (01) :24-50
[4]   Comprehensive analysis of kinase inhibitor selectivity [J].
Davis, Mindy I. ;
Hunt, Jeremy P. ;
Herrgard, Sanna ;
Ciceri, Pietro ;
Wodicka, Lisa M. ;
Pallares, Gabriel ;
Hocker, Michael ;
Treiber, Daniel K. ;
Zarrinkar, Patrick P. .
NATURE BIOTECHNOLOGY, 2011, 29 (11) :1046-U124
[5]  
Feng Q, 2018, ARXIV, DOI DOI 10.48550/ARXIV.1807.09741
[6]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232
[7]  
Gomes J., 2017, ARXIV, DOI DOI 10.48550/ARXIV.1703.10603
[8]   Concordance probability and discriminatory power in proportional hazards regression [J].
Gönen, M ;
Heller, G .
BIOMETRIKA, 2005, 92 (04) :965-970
[9]   Patterns of somatic mutation in human cancer genomes [J].
Greenman, Christopher ;
Stephens, Philip ;
Smith, Raffaella ;
Dalgliesh, Gillian L. ;
Hunter, Christopher ;
Bignell, Graham ;
Davies, Helen ;
Teague, Jon ;
Butler, Adam ;
Edkins, Sarah ;
O'Meara, Sarah ;
Vastrik, Imre ;
Schmidt, Esther E. ;
Avis, Tim ;
Barthorpe, Syd ;
Bhamra, Gurpreet ;
Buck, Gemma ;
Choudhury, Bhudipa ;
Clements, Jody ;
Cole, Jennifer ;
Dicks, Ed ;
Forbes, Simon ;
Gray, Kris ;
Halliday, Kelly ;
Harrison, Rachel ;
Hills, Katy ;
Hinton, Jon ;
Jenkinson, Andy ;
Jones, David ;
Menzies, Andy ;
Mironenko, Tatiana ;
Perry, Janet ;
Raine, Keiran ;
Richardson, Dave ;
Shepherd, Rebecca ;
Small, Alexandra ;
Tofts, Calli ;
Varian, Jennifer ;
Webb, Tony ;
West, Sofie ;
Widaa, Sara ;
Yates, Andy ;
Cahill, Daniel P. ;
Louis, David N. ;
Goldstraw, Peter ;
Nicholson, Andrew G. ;
Brasseur, Francis ;
Looijenga, Leendert ;
Weber, Barbara L. ;
Chiew, Yoke-Eng .
NATURE, 2007, 446 (7132) :153-158
[10]   SimBoost: a read-across approach for predicting drug-target binding affinities using gradient boosting machines [J].
He, Tong ;
Heidemeyer, Marten ;
Ban, Fuqiang ;
Cherkasov, Artem ;
Ester, Martin .
JOURNAL OF CHEMINFORMATICS, 2017, 9