On nonexistence of solutions to some time space fractional evolution equations with transformed space argument

被引:5
作者
Alsaedi, Ahmed [1 ]
Kirane, Mokhtar [1 ,2 ]
Fino, Ahmad Z. [3 ]
Ahmad, Bashir [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Res Grp,Nonlinear Anal & Appl Math NAAM, Jeddah 21589, Saudi Arabia
[2] Khalifa Univ, Fac Arts & Sci, Dept Math, POB 127788, Abu Dhabi, U Arab Emirates
[3] Sultan Qaboos Univ, Dept Math, FracDiff Res Grp DR RG 03, POB 46, Muscat 123, Oman
关键词
Nonlinear evolution equations; nonexistence of solutions; space transformed argument; Caputo fractional derivative; fractional Laplacian; BOUNDARY-VALUE-PROBLEMS; DIFFERENTIAL-EQUATIONS; CAUCHY-PROBLEM; REFLECTION; SYSTEM;
D O I
10.1142/S1664360722500096
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some results on nonexistence of nontrivial solutions to some time and space fractional differential evolution equations with transformed space argument are obtained via the nonlinear capacity method. The analysis is then used for a 2 x 2 system of equations with transformed space arguments.
引用
收藏
页数:36
相关论文
共 29 条
[1]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[2]   BOUNDED SOLUTIONS FOR DIFFERENTIAL-EQUATIONS WITH REFLECTION OF THE ARGUMENT [J].
AFTABIZADEH, AR ;
YONG, KH ;
WIENER, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 135 (01) :31-37
[3]   Global Existence and Blow-up of Solutions for a System of Fractional Wave Equations [J].
Ahmad, Bashir ;
Alsaedi, Ahmed ;
Berbiche, Mohamed ;
Kirane, Mokhtar .
TAIWANESE JOURNAL OF MATHEMATICS, 2022, 26 (01) :103-135
[4]   Blowing-up solutions of the time-fractional dispersive equations [J].
Alsaedi, Ahmed ;
Ahmad, Bashir ;
Kirane, Mokhtar ;
Torebek, Berikbol T. .
ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) :952-971
[5]   Analogs of classical boundary value problems for a second-order differential equation with deviating argument [J].
Andreev, AA .
DIFFERENTIAL EQUATIONS, 2004, 40 (08) :1192-1194
[6]  
[Anonymous], 1987, INT J MATH MATH SCI
[7]  
Antonevich, 1989, IZV AKAD NAUK SSSR M, V53, P3
[8]   Quantitative local and global a priori estimates for fractional nonlinear diffusion equations [J].
Bonforte, Matteo ;
Luis Vazquez, Juan .
ADVANCES IN MATHEMATICS, 2014, 250 :242-284
[9]  
BOROK VM, 1971, DOKL AKAD NAUK SSSR+, V200, P515
[10]   Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution [J].
Burlutskaya, M. Sh ;
Khromov, A. P. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (12) :2102-2114