A consistent method of estimation for three-parameter generalized exponential distribution

被引:1
|
作者
Prajapat, Kiran [1 ]
Mitra, Sharmishtha [1 ]
Kundu, Debasis [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Consistency; Estimation; Generalized exponential distribution; Invariant statistic; Likelihood; Maximum likelihood estimation;
D O I
10.1080/03610918.2021.1908557
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we provide a consistent method of estimation for the parameters of a three-parameter generalized exponential distribution which avoids the problem of unbounded likelihood function. The method is based on a maximum likelihood estimation of the shape parameter, which uses location and scale invariant statistic, originally proposed by Nagatsuka et al. (A consistent method of estimation for the three-parameter weibull distribution, Computational Statistics & Data Analysis 58:210-26). It has been shown that the estimators are unique and consistent for the entire range of the parameter space. We also present a Monte-Carlo simulation study along with the comparisons with some prominent estimation methods in terms of the bias and root mean square error. For the illustration purpose, the data analysis of a real lifetime data set has been reported.
引用
收藏
页码:2471 / 2487
页数:17
相关论文
共 50 条
  • [41] Estimating parameters of the three-parameter Weibull distribution using a neural network
    Abbasi, Babak
    Rabelo, Luis
    Hosseinkouchack, Mehdi
    EUROPEAN JOURNAL OF INDUSTRIAL ENGINEERING, 2008, 2 (04) : 428 - 445
  • [42] Bayesian inference of three-parameter bathtub-shaped lifetime distribution
    Jung, Myoungjin
    Chung, Younshik
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (17) : 4229 - 4241
  • [43] Properties and Parameter Estimation of the Partly-Exponential Distribution
    Roopmok, Nalattaporn
    Duangsaphon, Monthira
    Volodin, Andrei
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (09) : 3825 - 3836
  • [44] Monitoring Reliability for Three-Parameter Frechet Distribution Using Control Charts
    Wu, Youlong
    Younas, Sidra
    Abbas, Kamran
    Ali, Amjad
    Khan, Sajjad Ahmad
    IEEE ACCESS, 2020, 8 (08): : 71245 - 71253
  • [45] Properties and Parameter Estimation of the Partly-Exponential Distribution
    Nalattaporn Roopmok
    Monthira Duangsaphon
    Andrei Volodin
    Lobachevskii Journal of Mathematics, 2023, 44 : 3825 - 3836
  • [46] Robust Estimation methods of Generalized Exponential Distribution with Outliers
    Almongy, Hisham M.
    Almetwally, Ehab M.
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2020, 16 (03) : 545 - 559
  • [47] Inference on a Four-parameter Generalized Weighted Exponential Distribution
    Kazemi, Ramin
    Kohansal, Akram
    Fallah, Afshin
    Nasiri, Fariba
    FILOMAT, 2021, 35 (03) : 827 - 844
  • [48] The beta generalized exponential distribution
    Barreto-Souza, Wagner
    Santos, Alessandro H. S.
    Cordeiro, Gauss M.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2010, 80 (1-2) : 159 - 172
  • [49] Fitting the Three-Parameter Weibull Distribution: Review and Evaluation of Existing and New Methods
    Cousineau, Denis
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2009, 16 (01) : 281 - 288
  • [50] A New Three-Parameter Flexible Unit Distribution and Its Quantile Regression Model
    Muhammad, Mustapha
    Abba, Badamasi
    Xiao, Jinsen
    Alsadat, Najwan
    Jamal, Farrukh
    Elgarhy, Mohammed
    IEEE ACCESS, 2024, 12 : 156235 - 156251