A consistent method of estimation for three-parameter generalized exponential distribution

被引:1
作者
Prajapat, Kiran [1 ]
Mitra, Sharmishtha [1 ]
Kundu, Debasis [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Consistency; Estimation; Generalized exponential distribution; Invariant statistic; Likelihood; Maximum likelihood estimation;
D O I
10.1080/03610918.2021.1908557
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we provide a consistent method of estimation for the parameters of a three-parameter generalized exponential distribution which avoids the problem of unbounded likelihood function. The method is based on a maximum likelihood estimation of the shape parameter, which uses location and scale invariant statistic, originally proposed by Nagatsuka et al. (A consistent method of estimation for the three-parameter weibull distribution, Computational Statistics & Data Analysis 58:210-26). It has been shown that the estimators are unique and consistent for the entire range of the parameter space. We also present a Monte-Carlo simulation study along with the comparisons with some prominent estimation methods in terms of the bias and root mean square error. For the illustration purpose, the data analysis of a real lifetime data set has been reported.
引用
收藏
页码:2471 / 2487
页数:17
相关论文
共 22 条
[1]  
Bain LeeJ., 1987, INTRO PROBABILITY MA
[2]  
Billingsley P., 2008, PROBABILITY MEASURE
[3]   MODIFIED MOMENT ESTIMATION FOR THE 3-PARAMETER WEIBULL DISTRIBUTION [J].
COHEN, AC ;
WHITTEN, BJ ;
DING, YH .
JOURNAL OF QUALITY TECHNOLOGY, 1984, 16 (03) :159-167
[4]  
COHEN AC, 1982, COMMUN STAT A-THEOR, V11, P2631
[5]   ESTIMATION IN THE 3-PARAMETER LOGNORMAL-DISTRIBUTION [J].
COHEN, AC ;
WHITTEN, BJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1980, 75 (370) :399-404
[6]   MODIFIED MOMENT AND MAXIMUM-LIKELIHOOD ESTIMATORS FOR PARAMETERS OF 3-PARAMETER GAMMA-DISTRIBUTION [J].
COHEN, AC ;
WHITTEN, BJ .
COMMUNICATIONS IN STATISTICS PART B-SIMULATION AND COMPUTATION, 1982, 11 (02) :197-216
[7]   On the existence and uniqueness of the MLEs of the parameters of a general class of exponentiated distributions [J].
Ghitany, M. E. ;
Al-Jarallah, R. A. ;
Balakrishnan, N. .
STATISTICS, 2013, 47 (03) :605-612
[8]   Generalized exponential distribution: Existing results and some recent developments [J].
Gupta, Rameshwar D. ;
Kundu, Debasis .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (11) :3537-3547
[9]   Generalized exponential distributions [J].
Gupta, RD ;
Kundu, D .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 1999, 41 (02) :173-188
[10]  
Gupta RD, 2001, BIOMETRICAL J, V43, P117, DOI 10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO