Numerical investigation of damage and ignition behaviors of PBX under punch loading

被引:4
作者
Deng, Xiaoliang [1 ]
Huang, Yafei [1 ]
Zhao, Jibo [1 ]
机构
[1] CAEP, Inst Fluid Phys, Natl Key Lab Shock Wave & Detonat Phys, Mianyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Peridynamics; Polymer bonded explosive (PBX); Impact loading; Ignition behavior; Dynamic damage; POLYMER BONDED EXPLOSIVES; HOT-SPOT IGNITION; IMPACT; MODEL; DEFORMATION; PROPAGATION; EVOLUTION;
D O I
10.1016/j.engfracmech.2024.109903
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The major damage and ignition features of polymer bonded explosive (PBX) subjected to punch loading are captured by developed mechanical-thermal-chemical coupled multiphysics peridynamics (PD) framework. The framework integrates a four-step chemical reaction kinetics model and thermal effect induced by friction due to mechanical damage. The heterogeneous microstructures are explicitly taken into consideration, enabling different fracture modes such as intergranular and trans-granular fractures can be captured. Results show that the dynamic damage is characterized by the formation of a triangular-shaped dead zone, in agreement with Prandtl's prediction. Flow field analysis implies that the changes of flow field in the transition zone are responsible for the temperature rise. The riskiest positions to ignite are the boundaries of the triangular-shaped dead zone and the region inside the dead zone. Furthermore, sliding friction dissipation associated with trans-granular fracture and inter-granular fracture are responsible for the ignition along the boundaries of dead zone and inside the dead zone, respectively. The analyses on mechanical damage and temperature rise reveal that mechanical damage precedes the temperature rise. Simulation results provide novel insight into ignition mechanism of PBX, which can be used to construct more accurate physical model of non-shock ignition of PBX.
引用
收藏
页数:21
相关论文
共 78 条
[1]  
[Anonymous], 1990, Dynamic fracture mechanics
[2]  
Asay BW, 2010, SHOCK WAVE SCI TECHN, V5, P1, DOI 10.1007/978-3-540-87953-4_1
[3]   Prediction of probabilistic ignition behavior of polymer-bonded explosives from microstructural stochasticity [J].
Barua, A. ;
Kim, S. ;
Horie, Y. ;
Zhou, M. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (18)
[4]   Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold [J].
Barua, A. ;
Kim, S. ;
Horie, Y. ;
Zhou, M. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (06)
[5]   Energy localization in HMX-Estane polymer-bonded explosives during impact loading [J].
Barua, A. ;
Horie, Y. ;
Zhou, M. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (05)
[6]   An adaptive thermo-mechanical peridynamic model for fracture analysis in ceramics [J].
Bazazzadeh, Soheil ;
Mossaiby, Farshid ;
Shojaei, Arman .
ENGINEERING FRACTURE MECHANICS, 2020, 223
[7]   A constitutive model for the non-shock ignition and mechanical response of high explosives [J].
Bennett, JG ;
Haberman, KS ;
Johnson, JN ;
Asay, BW ;
Henson, BF .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (12) :2303-2322
[8]   Why do cracks branch? A peridynamic investigation of dynamic brittle fracture [J].
Bobaru, Florin ;
Zhang, Guanfeng .
INTERNATIONAL JOURNAL OF FRACTURE, 2015, 196 (1-2) :59-98
[9]   The peridynamic formulation for transient heat conduction [J].
Bobaru, Florin ;
Duangpanya, Monchai .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (19-20) :4047-4059
[10]   Peridynamic simulation of dynamic fracture in functionally graded materials subjected to impact load [J].
Candas, Adem ;
Oterkus, Erkan ;
Imrak, C. Erdem .
ENGINEERING WITH COMPUTERS, 2023, 39 (01) :253-267