Quantum cascade disk and ring lasers

被引:2
作者
Kacmoli, S. [1 ]
Gmachl, C. F. [1 ]
机构
[1] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
关键词
EMISSION; RESONATORS; COHERENCE;
D O I
10.1063/5.0180606
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum cascade lasers (QCLs) are a prominent semiconductor laser source operating in the mid-infrared and terahertz regimes. As is typical with semiconductor lasers, QCLs usually monolithically integrate the active gain material and the resonator. Hence, over nearly 30 years of QCL development, resonator geometries have developed alongside active region designs. Disk and ring geometries, in particular, have long been recognized for their unique attributes, which have, in turn, contributed to the demonstration of ultra-small cavities as well as surface emission from QCLs. In recent years, ring geometries have witnessed a resurgence as promising platforms for frequency comb and soliton generation as well as mid-infrared photonic integration. In this Perspective, we describe the attributes that make ring and disk QCLs unique by discussing key demonstrations. We present recent results, which indicate that these devices are poised to become building blocks of highly integrated, next-generation spectrometers operating in the mid-infrared. We discuss promising avenues for future research centered around monolithic ring and disk-type QCLs in applications ranging from gas sensing and spectroscopy to quantum optics and non-Hermitian photonics.
引用
收藏
页数:10
相关论文
共 97 条
[1]   Room-temperature operation of electrically pumped quantum-cascade microcylinder lasers [J].
Anders, S ;
Schrenk, W ;
Gornik, E ;
Strasser, G .
APPLIED PHYSICS LETTERS, 2002, 80 (22) :4094-4096
[2]   Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators [J].
Audet, Ross ;
Belkin, Mikhail A. ;
Fan, Jonathan A. ;
Lee, Benjamin G. ;
Lin, Kai ;
Capasso, Federico .
APPLIED PHYSICS LETTERS, 2007, 91 (13)
[3]   Threshold current reduction and directional emission of deformed microdisk lasers via spatially selective electrical pumping [J].
Aung, Nyan L. ;
Ge, Li ;
Malik, Omer ;
Tuereci, Hakan E. ;
Gmachl, Claire F. .
APPLIED PHYSICS LETTERS, 2015, 107 (15)
[4]   High power, continuous wave, quantum cascade ring laser [J].
Bai, Y. ;
Tsao, S. ;
Bandyopadhyay, N. ;
Slivken, S. ;
Lu, Q. Y. ;
Caffey, D. ;
Pushkarsky, M. ;
Day, T. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2011, 99 (26)
[5]   Reversing the pump dependence of a laser at an exceptional point [J].
Brandstetter, M. ;
Liertzer, M. ;
Deutsch, C. ;
Klang, P. ;
Schoeberl, J. ;
Tuereci, H. E. ;
Strasser, G. ;
Unterrainer, K. ;
Rotter, S. .
NATURE COMMUNICATIONS, 2014, 5
[6]   Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs [J].
Burghoff, David ;
Yang, Yang ;
Hayton, Darren J. ;
Gao, Jian-Rong ;
Reno, John L. ;
Hu, Qing .
OPTICS EXPRESS, 2015, 23 (02) :1190-1202
[7]   Terahertz laser frequency combs [J].
Burghoff, David ;
Kao, Tsung-Yu ;
Han, Ningren ;
Chan, Chun Wang Ivan ;
Cai, Xiaowei ;
Yang, Yang ;
Hayton, Darren J. ;
Gao, Jian-Rong ;
Reno, John L. ;
Hu, Qing .
NATURE PHOTONICS, 2014, 8 (06) :462-467
[8]   CAVITY QUANTUM ELECTRODYNAMIC ENHANCEMENT OF STIMULATED-EMISSION IN MICRODROPLETS [J].
CAMPILLO, AJ ;
EVERSOLE, JD ;
LIN, HB .
PHYSICAL REVIEW LETTERS, 1991, 67 (04) :437-440
[9]   Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range [J].
Chassagneux, Y. ;
Palomo, J. ;
Colombelli, R. ;
Dhillon, S. ;
Sirtori, C. ;
Beere, H. ;
Alton, J. ;
Ritchie, D. .
APPLIED PHYSICS LETTERS, 2007, 90 (09)
[10]   SOLITON FIBER RING LASER [J].
CHEN, CJ ;
WAI, PKA ;
MENYUK, CR .
OPTICS LETTERS, 1992, 17 (06) :417-419