Increase in the Physicomechanical Properties of Aluminum Alloys Reinforced with Boron Carbide Particles

被引:1
作者
Alattar, A. L. [1 ]
Nikitina, L. N. [1 ]
Bazhin, V. Yu. [1 ]
机构
[1] St Petersburg Min Univ, St Petersburg 199106, Russia
来源
RUSSIAN METALLURGY | 2023年 / 2023卷 / 06期
关键词
composite; aluminum alloy; mechanical properties; boron carbide; casting and forging; microstructure; scanning electron microscopy; MECHANICAL-PROPERTIES; COMPOSITES;
D O I
10.1134/S0036029523060071
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
To develop a technology for the production of composite Al-Cu-B4C alloys, the structure and properties of aluminum-based alloy with refractory boron carbide particles distributed in the alloy matrix are studied. A comparative assessment of the conformity of the mechanical properties to structural peculiarities of blanks is performed via a parallel microstructural analysis by scanning electron microscopy. The electron-microscopic data obtained for prepared aluminum alloy samples show a decrease in the overall level of looseness and high wettability of the particle surface with the matrix melt. The best values of the hardness and ultimate strength are reached for blanks with a boron carbide particle content of 5%. When preparing blanks with boron carbide contents of 4-5 wt %, the lowest level of segregation in the aluminum matrix is achieved, which ensures a homogeneous fine-grained structure and enhanced mechanical characteristics of the blanks.
引用
收藏
页码:688 / 694
页数:7
相关论文
共 15 条
  • [1] Al-Cu-B4C Composite Materials for the Production of High-Strength Billets
    Alattar, A. L.
    Bazhin, V. Y.
    [J]. METALLURGIST, 2020, 64 (5-6) : 566 - 573
  • [2] Wear characteristics of Al-Cr-O surface nano-composite layer fabricated on Al6061 plate by friction stir processing
    Anvari, S. R.
    Karimzadeh, F.
    Enayati, M. H.
    [J]. WEAR, 2013, 304 (1-2) : 144 - 151
  • [3] Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling
    Basariya, M. Raviathul
    Srivastava, V. C.
    Mukhopadhyay, N. K.
    [J]. MATERIALS & DESIGN, 2014, 64 : 542 - 549
  • [4] TLA and wear quantification of an aluminium-silicon-copper alloy for the car industry
    Corniani, E.
    Jech, M.
    Ditroi, F.
    Wopelka, T.
    Franek, F.
    [J]. WEAR, 2009, 267 (5-8) : 828 - 832
  • [5] Deev V., 2018, Solid State Phenomena, V284, P593, DOI 10.4028/www.scientific.net/SSP.284.593
  • [6] Influence of Processing Temperatures on Mechanical Properties and Microstructure of Squeeze Cast Aluminum Alloy Composites
    Gurusamy, P.
    Prabu, S. Balasivanandha
    Paskaramoorthy, R.
    [J]. MATERIALS AND MANUFACTURING PROCESSES, 2015, 30 (03) : 367 - 373
  • [7] Jiang B., 2020, Int. J. Adv. Manuf. Technol., P1
  • [8] Kosnikov G. A., 2012, Litein. Proizv., P4
  • [9] Luts A. R., 2016, Sovr. Mater., Tekhnika, Tekhnol., P63
  • [10] Aluminum Matrix Composites for Industrial Use: Advances and Trends
    Mavhungu, S. T.
    Akinlabi, E. T.
    Onitiri, M. A.
    Varachia, F. M.
    [J]. INTERNATIONAL CONFERENCE ON SUSTAINABLE MATERIALS PROCESSING AND MANUFACTURING (SMPM 2017), 2016, 7 : 178 - 182