Optimizing Land Use Identification With Social Networks: Comparative Evaluation of Machine Learning Algorithms

被引:0
作者
Aljeri, Munairah [1 ]
机构
[1] Kuwait Inst Sci Res, Safat 13109, Kuwait
关键词
Classification; machine learning; land use; social network data; geographic location; ECOSYSTEM SERVICES; MEDIA;
D O I
10.1109/ACCESS.2023.3325281
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a comprehensive comparison of various Machine Learning (ML) classifiers for urban land use identification using social networks data. Two analysis cycles were conducted, with the second cycle introducing the "popularity index" parameter. The results demonstrate that incorporating the popularity index significantly improved the accuracy rates of all classifiers. The Convolutional Neural Network (CNN) consistently outperformed other classifiers with a 0.9 accuracy, but the key highlight was the popularity index parameter, which optimized urban land use identification. By providing crucial contextual information and normalizing raw tweet counts, the popularity index proved vital for leveraging social media data in urban land use classification. Our findings support the value of social media data for analyzing urban land use dynamics and highlight ML classifiers with the popularity index as a promising approach to monitoring and understanding ever-changing patterns. This research makes a significant contribution to data-driven urban planning by highlighting the capacity of social media data to provide real-time and detailed insights into urban activities and land use patterns. These insights, in turn, can inform and enhance strategies for sustainable urban development and resource allocation, making them more informed and effective.
引用
收藏
页码:117067 / 117077
页数:11
相关论文
共 50 条
[1]   Spatio-temporal simulation and prediction of land-use change using conventional and machine learning models: a review [J].
Aburas, Maher Milad ;
Ahamad, Mohd Sanusi S. ;
Omar, Najat Qader .
ENVIRONMENTAL MONITORING AND ASSESSMENT, 2019, 191 (04)
[2]   Land Use Identification through Social Network Interaction [J].
Aguilar-Ruiz, Jesus S. ;
Pauca-Quispe, Diana C. ;
Butron-Revilla, Cinthya ;
Suarez-Lopez, Ernesto ;
Aranibar-Tila, Karla .
APPLIED SCIENCES-BASEL, 2022, 12 (17)
[3]   Big Data-Driven Approach to Analyzing Spatio-Temporal Mobility Pattern [J].
Aljeri, Munairah .
IEEE ACCESS, 2022, 10 :98414-98426
[4]   Comparison of Land Use Land Cover Classifiers Using Different Satellite Imagery and Machine Learning Techniques [J].
Basheer, Sana ;
Wang, Xiuquan ;
Farooque, Aitazaz A. ;
Nawaz, Rana Ali ;
Liu, Kai ;
Adekanmbi, Toyin ;
Liu, Suqi .
REMOTE SENSING, 2022, 14 (19)
[5]  
BOTTOU L., 1991, Proceedings of Neuro-Nimes, V91
[6]   Understanding deep learning in land use classification based on Sentinel-2 time series [J].
Campos-Taberner, Manuel ;
Javier Garcia-Haro, Francisco ;
Martinez, Beatriz ;
Izquierdo-Verdiguier, Emma ;
Atzberger, Clement ;
Camps-Valls, Gustau ;
Amparo Gilabert, Maria .
SCIENTIFIC REPORTS, 2020, 10 (01)
[7]   Inferring land use from spatialtemporal taxi ride data [J].
Choi, Junyong ;
No, Wonjun ;
Park, Minju ;
Kim, Youngchul .
APPLIED GEOGRAPHY, 2022, 142
[8]   Land use change, urbanization, and change in landscape pattern in a metropolitan area [J].
Dadashpoor, Hashem ;
Azizi, Parviz ;
Moghadasi, Mahdis .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 655 :707-719
[9]   Land use land cover change detection and monitoring of urban growth using remote sensing and GIS techniques: a micro-level study [J].
Das, Sandipta ;
Angadi, Dasharatha P. .
GEOJOURNAL, 2022, 87 (03) :2101-2123
[10]   Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in Brazil [J].
de Mello, Kaline ;
Taniwaki, Ricardo Hideo ;
de Paula, Felipe Rossetti ;
Valente, Roberta Averna ;
Randhir, Timothy O. ;
Macedo, Diego Rodrigues ;
Leal, Cecilia Gontijo ;
Rodrigues, Carolina Bozetti ;
Hughes, Robert M. .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 270