Graph-Based Active Learning for Nearly Blind Hyperspectral Unmixing

被引:4
作者
Chen, Bohan [1 ]
Lou, Yifei [2 ,3 ]
Bertozzi, Andrea L. [1 ]
Chanussot, Jocelyn [4 ]
机构
[1] Univ Calif Los Angeles UCLA, Dept Math, Los Angeles, CA 90024 USA
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Sch Data Sci & Soc, Chapel Hill, NC 27599 USA
[4] Univ Grenoble Alpes, Grenoble Inst Technol Grenoble INP, GIPSA Lab, CNRS, F-38000 Grenoble, France
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
关键词
Active learning; graph learning; hyperspectral unmixing (HSU); semisupervised learning; NONNEGATIVE MATRIX FACTORIZATION; ALGORITHM; REGULARIZATION; REGRESSION; FRAMEWORK; QUANTIFICATION; DIMENSIONALITY;
D O I
10.1109/TGRS.2023.3313933
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral unmixing (HSU) is an effective tool to ascertain the material composition of each pixel in a hyperspectral image with typically hundreds of spectral channels. In this article, we propose two graph-based semisupervised unmixing methods. The first one directly applies graph learning to the unmixing problem, while the second one solves an optimization problem that combines the linear unmixing model and a graph-based regularization term. Following a semisupervised framework, our methods require a very small number of training pixels that can be selected by a graph-based active learning method. We assume to obtain the ground-truth information at these selected pixels, which can be either the exact (EXT) abundance value or the one-hot (OH) pseudo-label. In practice, the latter is much easier to obtain, which can be achieved by minimally involving a human in the loop. Compared with other popular blind unmixing methods, our methods significantly improve performance with minimal supervision. Specifically, the experiments demonstrate that the proposed methods improve the state-of-the-art blind unmixing approaches by 50% or more using only 0.4% of training pixels.
引用
收藏
页数:16
相关论文
共 63 条
[51]  
Sajda P., 2003, 4 INT S INDEPENDENT, P71
[52]   Discrete Signal Processing on Graphs: Frequency Analysis [J].
Sandryhaila, Aliaksei ;
Moura, Jose M. F. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (12) :3042-3054
[53]   Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX) [J].
Schaepman, Michael E. ;
Jehle, Michael ;
Hueni, Andreas ;
D'Odorico, Petra ;
Damm, Alexander ;
Weyerrnann, Jurg ;
Schneider, Fabian D. ;
Laurent, Valerie ;
Popp, Christoph ;
Seidel, Felix C. ;
Lenhard, Karim ;
Gege, Peter ;
Kuechler, Christoph ;
Brazile, Jason ;
Kohler, Peter ;
De Vos, Lieve ;
Meuleman, Koen ;
Meynart, Roland ;
Schlaepfer, Daniel ;
Kneubuhler, Mathias ;
Itten, Klaus I. .
REMOTE SENSING OF ENVIRONMENT, 2015, 158 :207-219
[54]   The Emerging Field of Signal Processing on Graphs [J].
Shuman, David I. ;
Narang, Sunil K. ;
Frossard, Pascal ;
Ortega, Antonio ;
Vandergheynst, Pierre .
IEEE SIGNAL PROCESSING MAGAZINE, 2013, 30 (03) :83-98
[55]   A Practical Approach for Hyperspectral Unmixing Using Deep Learning [J].
Vijayashekhar, S. S. ;
Deshpande, Vijay S. ;
Bhatt, Jignesh S. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[56]   A tutorial on spectral clustering [J].
von Luxburg, Ulrike .
STATISTICS AND COMPUTING, 2007, 17 (04) :395-416
[57]  
Wang W., 2013, Projection onto the probability simplex: An ecient algorithm with a simple proof, and an application, DOI DOI 10.48550/ARXIV.1309.1541
[58]   Hyperspectral Unmixing via Total Variation Regularized Nonnegative Tensor Factorization [J].
Xiong, Fengchao ;
Qian, Yuntao ;
Zhou, Jun ;
Tang, Yuan Yan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04) :2341-2357
[59]   Improved Collaborative Non-Negative Matrix Factorization and Total Variation for Hyperspectral Unmixing [J].
Yuan, Yuan ;
Zhang, Zihan ;
Wang, Qi .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 :998-1010
[60]   Progress and Challenges in Intelligent Remote Sensing Satellite Systems [J].
Zhang, Bing ;
Wu, Yuanfeng ;
Zhao, Boya ;
Chanussot, Jocelyn ;
Hong, Danfeng ;
Yao, Jing ;
Gao, Lianru .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :1814-1822