Bayesian parameter identification in electrochemical model for lithium-ion batteries

被引:17
作者
Kim, Seongyoon [1 ]
Kim, Sanghyun [1 ]
Choi, Yun Young [1 ]
Choi, Jung-Il [1 ]
机构
[1] Yonsei Univ, Sch Math & Comp Computat Sci & Engn, Seoul 03722, South Korea
关键词
Lithium-ion battery; Pseudo-two-dimensional model; Uncertainty quantification; Bayesian parameter identification; IDENTIFIABILITY; CIRCUIT;
D O I
10.1016/j.est.2023.108129
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electrochemical models can characterize the internal behavior of cells and are powerful and effective tools for the design and management of batteries. This study proposes a comprehensive framework of Bayesian parameter identification to determine the parameter distributions in the electrochemical model and to estimate the global sensitivity of the parameters for lithium-ion batteries. Bayesian inference in parameter identification can simultaneously determine accurate parameter estimates and parameter identifiability, given specific voltage measurements. Among the several parameters in the pseudo-two-dimensional model, 15 parameters are selected to estimate the posterior distributions. The reconstructed voltage curves through the estimated parameter distributions are consistent with the reference voltages, with relative errors of less than 0.7% at various discharge rates. Changes in the parameter distributions and identifiability were investigated for different discharge rates through the estimated joint and marginal distributions of the parameters. Moreover, based on variance-based global sensitivity analysis, the identifiability of the electrochemical parameters according to the discharge rates is quantitatively analyzed. We demonstrate that the Bayesian parameter identification simultaneously obtains the parameter distributions and identifiability, considering the correlation between various parameters. The proposed framework can help to analyze the behaviors of batteries according to specific operating conditions and materials.
引用
收藏
页数:11
相关论文
共 35 条
[1]   Parametrization of physics-based battery models from input-output data: A review of methodology and current research [J].
Andersson, Malin ;
Streb, Moritz ;
Ko, Jing Ying ;
Klass, Verena Lofqvist ;
Klett, Matilda ;
Ekstrom, Henrik ;
Johansson, Mikael ;
Lindbergh, Goran .
JOURNAL OF POWER SOURCES, 2022, 521
[2]   A tutorial on adaptive MCMC [J].
Andrieu, Christophe ;
Thoms, Johannes .
STATISTICS AND COMPUTING, 2008, 18 (04) :343-373
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]  
Beck JV, 1977, Parameter Estimation in Engineering and Science
[5]   Nonlinear Identifiability Analysis of the Porous Electrode Theory Model of Lithium-Ion Batteries [J].
Berliner, Marc D. ;
Zhao, Hongbo ;
Das, Supratim ;
Forsuelo, Michael ;
Jiang, Benben ;
Chueh, William H. ;
Bazant, Martin Z. ;
Braatz, Richard D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)
[6]  
Brooks S, 2011, CH CRC HANDB MOD STA, pXIX
[7]   Parameter identification and identifiability analysis of lithium-ion batteries [J].
Choi, Yun Young ;
Kim, Seongyoon ;
Kim, Kyunghyun ;
Kim, Sanghyun ;
Choi, Jung-Il .
ENERGY SCIENCE & ENGINEERING, 2022, 10 (02) :488-506
[8]   Improving Aging Identifiability of Lithium-Ion Batteries Using Deep Reinforcement Learning [J].
Chun, Huiyong ;
Yoon, Kwanwoong ;
Kim, Jungsoo ;
Han, Soohee .
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2023, 9 (01) :995-1007
[9]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[10]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935