Modeling solute-grain boundary interactions in a bcc Ti-Mo alloy using density functional theory

被引:4
作者
Umashankar, Hariharan [1 ]
Scheiber, Daniel [2 ]
Razumovskiy, Vsevolod I. [2 ]
Militzer, Matthias [1 ]
机构
[1] Univ British Columbia, Ctr Met Proc Engn, Vancouver, BC V6T 1Z4, Canada
[2] Mat Ctr Leoben Forsch GmbH, Roseggerstr 12, A-8700 Leoben, Austria
基金
奥地利科学基金会;
关键词
Solute segregation; Ti-Mo alloys; First-principles; Grain boundary; 1ST-PRINCIPLES CALCULATIONS; MECHANICAL-PROPERTIES; ELASTIC PROPERTIES; TITANIUM-ALLOYS; X ALLOYS; SEGREGATION; ELEMENTS; COHESION; DESIGN; ORDER;
D O I
10.1016/j.commatsci.2023.112393
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solute segregation in alloys is a key phenomenon which affects various material characteristics such as embrittlement, grain growth and precipitation kinetics. In this work, the segregation energies of Y, Zr, and Nb to a & sigma;5 grain boundary in a bcc Ti-25 at % Mo alloy are determined using density functional theory (DFT) calculations. A systematic approach is laid out by computing the solution energy distributions in the bulk alloy using Warren-Cowley short-range order parameters to find a representative bulk-solute reference energy. Additionally, different scenarios are considered when a solute atom replaces different sites in terms of their local Ti-Mo chemistry at the GB plane to calculate the distribution of segregation energies. The solute segregation to a Mo site at the GB plane is preferred rather than to a Ti site. Further analysis shows that these segregation energy trends can be rationalized based on a primarily elastic interaction. Thus the segregation energies scale with the solute size such that Y has the largest segregation energies followed by Zr and Nb.
引用
收藏
页数:10
相关论文
共 49 条
[1]   Solubility and grain boundary segregation of iron in hcp titanium: A computational study [J].
Aksyonov, D. A. ;
Lipnitskii, A. G. .
COMPUTATIONAL MATERIALS SCIENCE, 2017, 137 :266-272
[2]  
Bakker H., 1998, Enthalpies in alloys : Miedema's semi-empirical model, DOI [DOI 10.4028/WWW.SCIENTIFIC.NET/MSFO.1, 10.4028/www.scientific.net/MSFo.1]
[3]   Perspectives on Titanium Science and Technology [J].
Banerjee, Dipankar ;
Williams, J. C. .
ACTA MATERIALIA, 2013, 61 (03) :844-879
[4]   FINITE ELASTIC STRAIN OF CUBIC CRYSTALS [J].
BIRCH, F .
PHYSICAL REVIEW, 1947, 71 (11) :809-824
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]  
COWLEY JM, 1965, PHYS REV, V138, P1384
[7]   AN APPROXIMATE THEORY OF ORDER IN ALLOYS [J].
COWLEY, JM .
PHYSICAL REVIEW, 1950, 77 (05) :669-675
[8]   Grain boundary segregation in Ni-base alloys: A combined atom probe tomography and first principles study [J].
Ebner, Anna Sophie ;
Jakob, Severin ;
Clemens, Helmut ;
Pippan, Reinhard ;
Maier-Kiener, Verena ;
He, Shuang ;
Ecker, Werner ;
Scheiber, Daniel ;
Razumovskiy, Vsevolod, I .
ACTA MATERIALIA, 2021, 221
[9]   Vacancy formation energy in CuNiCo equimolar alloy and CuNiCoFe high entropy alloy: ab initio based study [J].
Esfandiarpour, A. ;
Nasrabadi, M. N. .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2019, 66
[10]  
ESHELBY JD, 1956, SOLID STATE PHYS, V3, P79