CO2 methanation over Ni supported on Carbon-ZrO2: An optimization of the composite composition

被引:11
作者
Quatorze, Ines F. [1 ,2 ]
Goncalves, Liliana P. L. [1 ,2 ]
Kolen'ko, Yury V. [3 ]
Soares, O. Salome G. P. [1 ,2 ]
Pereira, M. Fernando R. [1 ,2 ]
机构
[1] Univ Porto, Fac Engn, LSRE LCM Lab Separat & React Engn, Lab Catalysis & Mat, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[2] Univ Porto, Fac Engn, ALiCE Associate Lab Chem Engn, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[3] Int Iberian Nanotechnol Lab, Nanochem Res Grp, Ave Mestre Jose Veiga, P-4715330 Braga, Portugal
关键词
CO2; Methanation; Ni-based catalysts; ZrO2; Carbon nanotubes; Activated carbon; SURFACE-PROPERTIES; ENHANCED ACTIVITY; CATALYST; OXIDE; HYDROGENATION; CHALLENGES; NANOTUBES; PROMOTION; EFFICIENT; KINETICS;
D O I
10.1016/j.cattod.2023.114215
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Currently, the most common catalysts for CO2 methanation reaction are based on Ni supported on metal oxides. However, such catalysts require high operation temperatures and present stability issues, which have been tackled by the use of expensive metal oxides such as CeO2 or ZrO2. In this study, the decrease in the amount of ZrO2 in ZrO2-based catalysts was addressed through the prepa-ration of composites of ZrO2 and carbon materials (activated carbon (AC) and carbon nanotubes (CNTs)). The optimization of the carbon:ZrO2 ratio demonstrated an optimal value of 50:50 in the case of AC:ZrO2, and 70:30 for CNT:ZrO2. With this composite composition, the possibility of enhancing the performance of the catalyst by functionalizing the carbon material was evaluated, and it was demonstrated that reduced AC (AC-R) with increased Lewis basic sites showed the best performance for AC-based composites, achieving a CO2 conversion of 79 % and CH4 selectivity of 98.9 % at 400 degrees C, whereas the catalysts supported on the pristine CNT:ZrO2 com-posite presented the highest CO2 conversion of 82.1 % and CH4 selectivity of 99.3 % at 400 degrees C. Notably, promotion with Fe was studied in the best performing support (CNT:ZrO2 (70:30) and it was shown that it enabled an improvement in terms of CO2 conversion and optimal temperature, achieving a CO2 conversion of 85 % and CH4 selectivity of 99.5 % at a lower temperature of 370 degrees C. This catalyst demonstrated to be highly stable for 70 h of time on stream with no apparent modifications on its chemical composition or microstructure. This work demonstrates that combining the properties of carbon materials and ZrO2 can be an interesting approach to obtain high performing catalysts for CO2 methanation.
引用
收藏
页数:7
相关论文
共 48 条
[1]   Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy [J].
Aldana, P. A. Ussa ;
Ocampo, F. ;
Kobl, K. ;
Louis, B. ;
Thibault-Starzyk, F. ;
Daturi, M. ;
Bazin, P. ;
Thomas, S. ;
Roger, A. C. .
CATALYSIS TODAY, 2013, 215 :201-207
[2]   Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods [J].
Ashok, J. ;
Ang, M. L. ;
Kawi, S. .
CATALYSIS TODAY, 2017, 281 :304-311
[3]   Enhanced activity of CO2 hydrogenation to CH4 over Ni based zeolites through the optimization of the Si/Al ratio [J].
Bacariza, M. C. ;
Graca, I. ;
Lopes, J. M. ;
Henriques, C. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2018, 267 :9-19
[4]   Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz) [J].
Beche, Eric ;
Charvin, Patrice ;
Perarnau, Danielle ;
Abanades, Stephane ;
Flamant, Gilles .
SURFACE AND INTERFACE ANALYSIS, 2008, 40 (3-4) :264-267
[5]   X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Lau, Leo W. M. ;
Gerson, Andrea ;
Smart, Roger St. C. .
SURFACE AND INTERFACE ANALYSIS, 2009, 41 (04) :324-332
[6]   Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation [J].
Chang, FW ;
Kuo, MS ;
Tsay, MT ;
Hsieh, MC .
APPLIED CATALYSIS A-GENERAL, 2003, 247 (02) :309-320
[7]   Influence of the oxide support reducibility on the CO2 methanation over Ru-based catalysts [J].
Dreyer, Jochen A. H. ;
Li, Peixin ;
Zhang, Linghai ;
Beh, Gein Khai ;
Zhang, Runduo ;
Sit, Patrick H. -L. ;
Teoh, Wey Yang .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 219 :715-726
[8]   The role of surface chemistry in catalysis with carbons [J].
Figueiredo, Jose Luis ;
Pereira, Manuel Fernando R. .
CATALYSIS TODAY, 2010, 150 (1-2) :2-7
[9]   CO2 Hydrogenation to Methanol and Methane over Carbon-Supported Catalysts [J].
Furimsky, Edward .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (35) :15393-15423
[10]   State-of-art modifications of heterogeneous catalysts for CO2 methanation - Active sites, surface basicity and oxygen defects [J].
Gao, Xingyuan ;
Wang, Ziyi ;
Huang, Qinying ;
Jiang, Mengling ;
Askari, Saeed ;
Dewangan, Nikita ;
Kawi, Sibudjing .
CATALYSIS TODAY, 2022, 402 :88-103