Normalised latent measure factor models

被引:0
|
作者
Beraha, Mario [1 ]
Griffin, Jim E. [2 ]
机构
[1] Univ Torino, Dept Econ & Stat, Corso Unione Sovietica 218-Bis, I-10134 Turin, Italy
[2] UCL, Dept Stat Sci, London, England
基金
欧洲研究理事会;
关键词
comparing probability distributions; dependent random measures; latent factor models; normalised random measures; Riemannian optimisation; DIRICHLET PROCESS; REGRESSION; INFERENCE;
D O I
10.1093/jrsssb/qkad062
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a methodology for modelling and comparing probability distributions within a Bayesian nonparametric framework. Building on dependent normalised random measures, we consider a prior distribution for a collection of discrete random measures where each measure is a linear combination of a set of latent measures, interpretable as characteristic traits shared by different distributions, with positive random weights. The model is nonidentified and a method for postprocessing posterior samples to achieve identified inference is developed. This uses Riemannian optimisation to solve a nontrivial optimisation problem over a Lie group of matrices. The effectiveness of our approach is validated on simulated data and in two applications to two real-world data sets: school student test scores and personal incomes in California. Our approach leads to interesting insights for populations and easily interpretable posterior inference.
引用
收藏
页码:1247 / 1270
页数:24
相关论文
共 50 条
  • [1] Latent factor models for density estimation
    Kundu, S.
    Dunson, D. B.
    BIOMETRIKA, 2014, 101 (03) : 641 - 654
  • [2] A New Class of Time Dependent Latent Factor Models with Applications
    Williamson, Sinead A.
    Zhang, Michael Minyi
    Damien, Paul
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [3] Bayesian Computation in Dynamic Latent Factor Models
    Lavine, Isaac
    Cron, Andrew
    West, Mike
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (03) : 651 - 665
  • [4] Latent Factor Regression Models for Grouped Outcomes
    Woodard, D. B.
    Love, T. M. T.
    Thurston, S. W.
    Ruppert, D.
    Sathyanarayana, S.
    Swan, S. H.
    BIOMETRICS, 2013, 69 (03) : 785 - 794
  • [5] Estimating stable latent factor models by indirect inference
    Calzolari, Giorgio
    Halbleib, Roxana
    JOURNAL OF ECONOMETRICS, 2018, 205 (01) : 280 - 301
  • [6] Nonparametric Bayes Stochastically Ordered Latent Class Models
    Yang, Hongxia
    O'Brien, Sean
    Dunson, David B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (495) : 807 - 817
  • [7] Structured prior distributions for the covariance matrix in latent factor models
    Heaps, Sarah Elizabeth
    Jermyn, Ian Hyla
    STATISTICS AND COMPUTING, 2024, 34 (04)
  • [8] Exploiting User and Item Embedding in Latent Factor Models for Recommendations
    Li, Zhaoqiang
    Huang, Jiajin
    Zhong, Ning
    2017 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2017), 2017, : 1241 - 1245
  • [9] The FacT: Taming Latent Factor Models for Explainability with Factorization Trees
    Tao, Yiyi
    Jia, Yiling
    Wang, Nan
    Wang, Hongning
    PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, : 295 - 304
  • [10] Causal Imputation for Counterfactual SCMs: Bridging Graphs and Latent Factor Models
    Ribot, Alvaro
    Squires, Chandler
    Uhler, Caroline
    CAUSAL LEARNING AND REASONING, VOL 236, 2024, 236 : 1141 - 1175