The Analytic Wavefunction

被引:27
作者
Salcedo, Santiago Aguei [1 ]
Lee, Mang Hei Gordon [1 ]
Melville, Scott [1 ]
Pajer, Enrico [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
关键词
Effective Field Theories; Boundary Quantum Field Theory; Scattering Amplitudes; DISPERSION; SINGULARITIES;
D O I
10.1007/JHEP06(2023)020
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The wavefunction in quantum field theory is an invaluable tool for tackling a variety of problems, including probing the interior of Minkowski spacetime and modelling boundary observables in de Sitter spacetime. Here we study the analytic structure of wavefunction coefficients in Minkowski as a function of their kinematics. We introduce an off-shell wavefunction in terms of amputated time-ordered correlation functions and show that it is analytic in the complex energy plane except for possible singularities on the negative real axis. These singularities are determined to all loop orders by a simple energy-conservation condition. We confirm this picture by developing a Landau analysis of wavefunction loop integrals and corroborate our findings with several explicit calculations in scalar field theories. This analytic structure allows us to derive new UV/IR sum rules for the wavefunction that fix the coefficients in its low-energy expansion in terms of integrals of discontinuities in the corresponding UV-completion. In contrast to the analogous sum rules for scattering amplitudes, the wavefunction sum rules can also constrain total-derivative interactions. We explicitly verify these new relations at one-loop order in simple UV models of a light and a heavy scalar. Our results, which apply to both Lorentz invariant and boost-breaking theories, pave the way towards deriving wavefunction positivity bounds in flat and cosmological spacetimes.
引用
收藏
页数:90
相关论文
共 50 条
  • [31] Physics of the analytic S-matrix
    Mizera, Sebastian
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1047 : 1 - 92
  • [32] PROJECTIVITY OF ANALYTIC HILBERT AND KAHLER QUOTIENTS
    Greb, Daniel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (06) : 3243 - 3271
  • [33] Local analytic sector subtraction at NNLO
    Magnea, L.
    Maina, E.
    Pelliccioli, G.
    Signorile-Signorile, C.
    Torrielli, P.
    Uccirati, S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (12):
  • [34] Solitary trajectories of analytic vector fields
    O. Le Gal
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3967 - 3976
  • [35] Extensions of arc-analytic functions
    Adamus, Janusz
    Seyedinejad, Hadi
    MATHEMATISCHE ANNALEN, 2018, 371 (1-2) : 685 - 693
  • [36] Rigorous Bounds on the Analytic S Matrix
    Guerrieri, Andrea
    Sever, Amit
    PHYSICAL REVIEW LETTERS, 2021, 127 (25)
  • [37] Solitary trajectories of analytic vector fields
    Le Gal, O.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3967 - 3976
  • [38] On almost blow-analytic equivalence
    Fichou, Goulwen
    Shiota, Masahiro
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 103 : 676 - 709
  • [39] Generalization of the analytic wavefront set and application
    Mechergui, Chokri
    Kamoun, Ines
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (05) : 2569 - 2600
  • [40] NORMAL FORMS OF ANALYTIC PERTURBATIONS OF QUASIHOMOGENEOUS VECTOR FIELDS: RIGIDITY, INVARIANT ANALYTIC SETS AND EXPONENTIALLY SMALL APPROXIMATION
    Lombardi, Eric
    Stolovitch, Laurent
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2010, 43 (04): : 659 - 718