Multisite Scenarios of Black Carbon and Biomass Burning Aerosol Characteristics in India

被引:3
作者
Kumar, Vivek [1 ,2 ]
Devara, Panuganti C. S. [2 ]
Soni, Vijay K. [1 ]
机构
[1] Minist Earth Sci, India Meteorol Dept IMD, Environm Monitoring & Res Ctr EMRC, New Delhi 110003, India
[2] Amity Univ Haryana AUH, Amity Ctr Excellence Ocean Atmospher Sci & Techno, Gurugram 122413, India
关键词
Black carbon; Carbonaceous aerosols; Biomass burning; Trend analysis; Atmospheric; boundary layer; LIGHT-ABSORPTION; OPTICAL-PROPERTIES; MIXING STATE; SNOW COVER; PREMONSOON; URBAN; DUST;
D O I
10.4209/aaqr.220435
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Black Carbon (BC) aerosols are not only substantial climate-forcing drivers but also impact human health. The spatial distribution of BC aerosols depends on the combination of anthropogenic activities and meteorological conditions. In this study, we used the India Meteorological Department (IMD) Black Carbon Observational Network datasets to assess the diurnal, seasonal, and long-term BC trends for the period, 2016-2021. The majority of the IMD's BC monitoring stations show an overall declining trend in the BC mass concentration during the study period in India. Maximum BC concentrations are observed in the post-monsoon and winter seasons due to the stubble-burning activity and lower values of Atmospheric Boundary Layer Height (ABLH). Minimum concentrations are observed at all stations in the monsoon season due to the wet scavenging of aerosols by rain. There is a clear decrease in the BC mass concentration from winter to monsoon months and an increase in the post-monsoon months. Regional emissions from crop residue burning in the post-harvesting seasons are the main contributing factor for extremely high levels of BC mass concentration. Low wind speed and shallow mixed layer were found to be the main reasons for high levels of aerosol concentration during the winter season. There is an increasing trend in Biomass Burning (BB) at most of the stations except for Thiruvananthapuram, where a prominent decreasing trend in BC concentration is also noticed. In the present study, the impact of local meteorological parameters such as wind, temperature, rainfall and Atmospheric Boundary Layer Height on BC mass concentration is investigated. The results show a negative correlation with rainfall, relative humidity, wind speed, temperature and ABL height. Both local activity and long-range transport at each study site are also found to be responsible for the significant changes in BC mass concentration.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Absorption of chemically aged biomass burning carbonaceous aerosol
    Tasoglou, Antonios
    Saliba, Georges
    Subramanian, R.
    Pandis, Spyros N.
    JOURNAL OF AEROSOL SCIENCE, 2017, 113 : 141 - 152
  • [2] Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique
    Tiwari, S.
    Pipal, A. S.
    Srivastava, A. K.
    Bisht, D. S.
    Pandithurai, G.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2015, 22 (04) : 2846 - 2855
  • [3] Unexpected Biomass Burning Aerosol Absorption Enhancement Explained by Black Carbon Mixing State
    Denjean, Cyrielle
    Brito, Joel
    Libois, Quentin
    Mallet, Marc
    Bourrianne, Thierry
    Burnet, Frederic
    Dupuy, Regis
    Flamant, Cyrille
    Knippertz, Peter
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (19)
  • [4] Study of spectral characteristics of black carbon from biomass burning and source apportionment over Agartala in the northeastern India
    Parminder Kaur
    Prasanth Srinivasan
    Pranab Dhar
    Barin Kumar De
    Anirban Guha
    Environmental Science and Pollution Research, 2020, 27 : 16584 - 16598
  • [5] Study of spectral characteristics of black carbon from biomass burning and source apportionment over Agartala in the northeastern India
    Kaur, Parminder
    Srinivasan, Prasanth
    Dhar, Pranab
    Kumar De, Barin
    Guha, Anirban
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (14) : 16584 - 16598
  • [6] BIOMASS BURNING IMPACT ON BLACK CARBON AEROSOL MASS CONCENTRATION AT A COASTAL SITE: CASE STUDIES
    Ulevicius, V.
    Bycenkiene, S.
    Spirkauskaite, N.
    Kecorius, S.
    LITHUANIAN JOURNAL OF PHYSICS, 2010, 50 (03): : 335 - 344
  • [7] Seasonal characteristics of black carbon aerosol mass concentrations and influence of meteorology, New Delhi (India)
    Sharma, Milap Chand
    Pandey, Vijendra Kumar
    Kumar, Rajesh
    Latief, Syed Umer
    Chakrawarthy, Elora
    Acharya, Prasenjit
    URBAN CLIMATE, 2018, 24 : 968 - 981
  • [8] Relative contributions of fossil fuel and biomass burning sources to black carbon aerosol on the Southern Atlantic Ocean Coast and King George Island (Antarctic Peninsula)
    Goncalves, Sergio J., Jr.
    Magalhaes, Newton
    Charello, Renata C.
    Evangelista, Heitor
    Godoi, Ricardo H. M.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2022, 94
  • [9] Characteristics and source apportionment of black carbon aerosol in the North China Plain
    Yang, Zheng
    Ma, Nan
    Wang, Qiaoqiao
    Li, Guo
    Pan, Xihao
    Dong, Wenlin
    Zhu, Shaowen
    Zhang, Shaobin
    Gao, Wenwen
    He, Yao
    Xie, Linhong
    Zhang, Yuxuan
    Kuhn, Uwe
    Xu, Wangyun
    Kuang, Ye
    Tao, Jiangchuan
    Hong, Juan
    Zhou, Guangsheng
    Sun, Yele
    Su, Hang
    Cheng, Yafang
    ATMOSPHERIC RESEARCH, 2022, 276
  • [10] Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles
    Lin, Peng
    Aiona, Paige K.
    Li, Ying
    Shiraiwa, Manabu
    Laskin, Julia
    Nizkorodov, Sergey A.
    Laskin, Alexander
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (21) : 11815 - 11824