Stability and multistability of synchronization in networks of coupled phase oscillators

被引:1
作者
Zhai, Yun [1 ,2 ,3 ]
Wang, Xuan [2 ,3 ]
Xiao, Jinghua [1 ]
Zheng, Zhigang [2 ,3 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Huaqiao Univ, Inst Syst Sci, Xiamen 361021, Peoples R China
[3] Huaqiao Univ, Coll Informat Sci & Engn, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
synchronization; coupled phase oscillators; complex networks; multistability; COMPLEX NETWORKS; DYNAMICS; SLIPS;
D O I
10.1088/1674-1056/acc808
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Coupled phase oscillators usually achieve synchronization as the coupling strength among oscillators is increased beyond a critical value. The stability of synchronous state remains an open issue. In this paper, we study the stability of the synchronous state in coupled phase oscillators. It is found that numerical integration of differential equations of coupled phase oscillators with a finite time step may induce desynchronization at strong couplings. The mechanism behind this instability is that numerical accumulated errors in simulations may trigger the loss of stability of the synchronous state. Desynchronization critical couplings are found to increase and diverge as a power law with decreasing the integral time step. Theoretical analysis supports the local stability of the synchronized state. Globally the emergence of synchronous state depends on the initial conditions. Other metastable ordered states such as twisted states can coexist with the synchronous mode. These twisted states keep locally stable on a sparse network but lose their stability when the network becomes dense.
引用
收藏
页数:9
相关论文
共 37 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[4]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[5]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[6]   Explosive transitions in complex networks' structure and dynamics: Percolation and synchronization [J].
Boccaletti, S. ;
Almendral, J. A. ;
Guan, S. ;
Leyva, I. ;
Liu, Z. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zou, Y. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 660 :1-94
[7]   MECHANISM OF RHYTHMIC SYNCHRONOUS FLASHING OF FIREFLIES [J].
BUCK, J ;
BUCK, E .
SCIENCE, 1968, 159 (3821) :1319-&
[8]   Modeling the network dynamics of pulse-coupled neurons [J].
Chandra, Sarthak ;
Hathcock, David ;
Crain, Kimberly ;
Antonsen, Thomas M. ;
Girvan, Michelle ;
Ott, Edward .
CHAOS, 2017, 27 (03)
[9]  
Dorogovtsev S. N., 2022, The Nature of Complex Networks, DOI DOI 10.1016/j.physa.2005.12.002
[10]   Multistability of twisted states in non-locally coupled Kuramoto-type models [J].
Girnyk, Taras ;
Hasler, Martin ;
Maistrenko, Yuriy .
CHAOS, 2012, 22 (01)