Neural networks for parameter estimation in intractable models

被引:17
|
作者
Lenzi, Amanda [1 ]
Bessac, Julie [1 ]
Rudi, Johann [1 ]
Stein, Michael L. [1 ,2 ]
机构
[1] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA
[2] Rutgers State Univ, Dept Stat, Piscataway, NJ USA
关键词
Deep neural networks; Intractable likelihood; Max -stable distributions; Parameter estimation; APPROXIMATE BAYESIAN COMPUTATION; INFERENCE; PREDICTION; SIMULATION; EXTREMES;
D O I
10.1016/j.csda.2023.107762
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The goal is to use deep learning models to estimate parameters in statistical models when standard likelihood estimation methods are computationally infeasible. For instance, inference for max-stable processes is exceptionally challenging even with small datasets, but simulation is straightforward. Data from model simulations are used to train deep neural networks and learn statistical parameters from max-stable models. The proposed neural network-based method provides a competitive alternative to current approaches, as demonstrated by considerable accuracy and computational time improvements. It serves as a proof of concept for deep learning in statistical parameter estimation and can be extended to other estimation problems.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Integration of Functional Link Neural Networks into a Parameter Estimation Methodology
    Le, Tuan-Ho
    Tang, Mengyuan
    Jang, Jun Hyuk
    Jang, Hyeonae
    Shin, Sangmun
    APPLIED SCIENCES-BASEL, 2021, 11 (19):
  • [42] Guitar Effects Recognition and Parameter Estimation With Convolutional Neural Networks
    Comunita, Marco
    Stowell, Dan
    Reiss, Joshua D.
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2021, 69 (7-8): : 594 - 604
  • [43] Parameter estimation for the cosmic microwave background with Bayesian neural networks
    Hortua, Hector J.
    Volpi, Riccardo
    Marinelli, Dimitri
    Malago, Luigi
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [44] Aquifer parameter estimation using genetic algorithms and neural networks
    Lingireddy, S
    CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS, 1998, 15 (02) : 125 - 144
  • [45] Parameter estimation in nonlinear systems using Hopfield neural networks
    Hu, ZN
    Balakrishnan, SN
    JOURNAL OF AIRCRAFT, 2005, 42 (01): : 41 - 53
  • [46] Parameter Estimation Of A Physiological Diabetes Model Using Neural Networks
    Moreira, Ana
    Philipps, Maren
    van Riel, Natal
    2023 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, CIBCB, 2023, : 208 - 215
  • [47] Parameter estimation using neural networks in the presence of detector effects
    Andreassen, Anders
    Hsu, Shih-Chieh
    Nachman, Benjamin
    Suaysom, Natchanon
    Suresh, Adi
    PHYSICAL REVIEW D, 2021, 103 (03)
  • [48] Parameter identification of multibody vehicle models using neural networks
    Hobusch, Salim
    Nikelay, Ilker
    Nowakowski, Christine
    Woschke, Elmar
    MULTIBODY SYSTEM DYNAMICS, 2024, 61 (03) : 361 - 380
  • [49] Parameter Estimation for Stochastic Hybrid Models of Biochemical Reaction Networks
    Mikeev, Linar
    Wolf, Verena
    HSCC 12: PROCEEDINGS OF THE 15TH ACM INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2012, : 155 - 165
  • [50] Estimation of quality of petroleum products by neural networks models
    Yamamoto, J
    Sasaki, T
    Hanakuma, Y
    Nakanishi, E
    KAGAKU KOGAKU RONBUNSHU, 1998, 24 (06) : 888 - 893