Acceleration of CRISPR/Cas9-Mediated Editing at Multiple Sites in the Saccharomyces cerevisiae Genome

被引:1
作者
Karpukhin, Alexey D. D. [1 ]
Sabirzyanov, Fanis A. A. [1 ]
Serebrianyi, Vsevolod A. A. [1 ]
机构
[1] Ajinomoto Genetika Res Inst, 1st Dorozhny Proezd, B-1-1, Moscow 117545, Russia
关键词
CRISPR; Cas9; Saccharomyces cerevisiae; simultaneous multiple modifications; electroporation; INTEGRATION; HOMOLOGY; DISRUPTION; CASSETTES;
D O I
10.3390/mps6020039
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The application of the CRISPR/Cas9-based genome editing technique to the yeast Saccharomyces cerevisiae has made it possible to simultaneously modify several sites, particularly to integrate several expression cassettes. The existing methods provide high efficiency for such modifications; however, common protocols include several preparatory steps, namely, the construction of an intermediate Cas9-expressing strain, the assembly of a plasmid bearing several single guide RNA (sgRNA) expression cassettes, and the surrounding integrated DNA fragments with long flanks for recombination with target loci. Since these preparatory steps are time consuming and may not be desirable in some types of experiments, we explored the possibility of multiple integration without these steps. We have demonstrated that it is possible to skip them simultaneously and integrate up to three expression cassettes into separate sites by transforming the recipient strain with the Cas9 expression plasmid, three differently marked sgRNA plasmids, and three donor DNAs flanked with short (70 bp) arms for recombination. This finding increases the flexibility of choosing the optimal experimental design for multiple editing of the genome of S. cerevisiae and can significantly accelerate such experiments.
引用
收藏
页数:12
相关论文
共 26 条
[1]   Expansion of EasyClone-MarkerFree toolkit for Saccharomyces cerevisiae genome with new integration sites [J].
Babaei, Mahsa ;
Sartori, Luisa ;
Karpukhin, Alexey ;
Abashkin, Dmitrii ;
Matrosova, Elena ;
Borodina, Irina .
FEMS YEAST RESEARCH, 2021, 21 (04)
[2]   Homology-Integrated CRISPR-Cas (HI-CRISPR) System for One-Step Multigene Disruption in Saccharomyces cerevisiae [J].
Bao, Zehua ;
Xiao, Han ;
Lang, Jing ;
Zhang, Lu ;
Xiong, Xiong ;
Sun, Ning ;
Si, Tong ;
Zhao, Huimin .
ACS SYNTHETIC BIOLOGY, 2015, 4 (05) :585-594
[3]   A SIMPLE AND EFFICIENT METHOD FOR DIRECT GENE DELETION IN SACCHAROMYCES-CEREVISIAE [J].
BAUDIN, A ;
OZIERKALOGEROPOULOS, O ;
DENOUEL, A ;
LACROUTE, F ;
CULLIN, C .
NUCLEIC ACIDS RESEARCH, 1993, 21 (14) :3329-3330
[4]  
Becker D M, 2001, Curr Protoc Mol Biol, VChapter 13, DOI 10.1002/0471142727.mb1307s27
[5]   Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J].
DiCarlo, James E. ;
Norville, Julie E. ;
Mali, Prashant ;
Rios, Xavier ;
Aach, John ;
Church, George M. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (07) :4336-4343
[6]   DNA double-strand break repair by homologous recombination [J].
Dudás, A ;
Chovanec, M .
MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH, 2004, 566 (02) :131-167
[7]   CRISPR-PCD and CRISPR-PCRep: Two novel technologies for simultaneous multiple segmental chromosomal deletion/replacement in Saccharomyces cerevisiae [J].
Easmin, Farhana ;
Sasano, Yu ;
Kimura, Shunta ;
Hassan, Naim ;
Ekino, Keisuke ;
Taguchi, Hisataka ;
Harashima, Satoshi .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2020, 129 (02) :129-139
[8]   gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing [J].
Easmin, Farhana ;
Hassan, Naim ;
Sasano, Yu ;
Ekino, Keisuke ;
Taguchi, Hisataka ;
Harashima, Satoshi .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2019, 128 (03) :373-378
[9]   Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae [J].
Flagfeldt, Dongmei Bai ;
Siewers, Verena ;
Huang, Le ;
Nielsen, Jens .
YEAST, 2009, 26 (10) :545-551
[10]  
Goldstein AL, 1999, YEAST, V15, P1541, DOI 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO