Complete convergence and complete integration convergence for weighted sums of arrays of rowwise m-END under sub-linear expectations space

被引:2
作者
Dong, He [1 ]
Tan, Xili [1 ]
Zhang, Yong [2 ]
机构
[1] Beihua Univ, Coll Math & Stat, Jilin 132013, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 03期
关键词
sub -linear expectations space; rowwise m -END random variables; complete convergence; complete integration convergence; DEPENDENT RANDOM-VARIABLES; G-BROWNIAN MOTION; STOCHASTIC CALCULUS; LIMIT-THEOREMS; LARGE NUMBERS; INEQUALITIES; LAWS;
D O I
10.3934/math.2023340
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the complete convergence and the complete integration convergence for weighted sums of m-extended negatively dependent (m-END) random variables under sub-linear expectations space with the condition of E<SIC>|X|p < CV(|X|p) < infinity, p > 1/alpha and alpha > 3/2. We obtain the results that can be regarded as the extensions of complete convergence and complete moment convergence under classical probability space. In addition, the Marcinkiewicz-Zygmund type strong law of large numbers for weighted sums of m-END random variables under the sub-linear expectations space is proved.
引用
收藏
页码:6705 / 6724
页数:20
相关论文
共 23 条