Synthesis, Characterization, and Application of TiO2 Nanorods for Hydrazine Sensing

被引:1
作者
Umar, Ahma [1 ,2 ,3 ]
Akhtar, M. Shaheer [4 ,5 ,6 ]
Ibrahim, Ahmed A. [1 ,2 ]
Alhamami, Mohsen A. M. [1 ,2 ]
Kim, Chong Yeal [6 ]
机构
[1] Najran Univ, Coll Sci & Arts, Dept Chem, Najran 11001, Saudi Arabia
[2] Najran Univ, Promising Ctr Sensors & Elect Devices PCSED, Najran 11001, Saudi Arabia
[3] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
[4] Jeonbuk Natl Univ, Sch Semicond & Chem Engn, Jeonju 54896, South Korea
[5] Jeonbuk Natl Univ, Grad Sch Integrated Energy AI, Jeonju 54896, South Korea
[6] Jeonbuk Natl Univ, New & Renewable Energy Mat Dev Ctr NewREC, Jeonbuk 56332, South Korea
关键词
Titanium Dioxide Nanorods; Chemical Sensing; Electrochemical; Hydrazine Detection; Linear Dynamics; CHEMICAL SENSOR; NANOPARTICLES; OXIDE; PERFORMANCE;
D O I
10.1166/sam.2023.4606
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper presents a comprehensive investigation into the synthesis, characterization, and application of tita-nium dioxide (TiO2) nanorods for the purpose of hydrazine chemical sensing. The nanorods were efficiently prepared through a low-temperature chemical synthesis process, and a detail characterization process was undertaken to assess their structural, morphological, compositional, and sensing properties. Employing sophis-ticated techniques such as field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), the morphological characterizations unveiled a high-density growth of diminutive nanorods. Crystallographic examinations IP:confir med203.8.109.20the On:exceptional Tue, cr30 Jnystallinity 2024of the08:54:30synthesized nanorods, showcasing a predominant anatase phase. These insights into the structural and mophological attributes contribute to a Copyright: American Scientific Publishers profound understanding of the nanorods' potentialin various applications. Notably, this study focuses on the uti-Delivered by Ingenta lization of TiO2 nanorods as electron mediating materials for the fabrication of a hydrazine chemical sensor. The fabricated sensor exhibited commendable sensitivity, registering a current response of 4.69 mu A center dot mu M-1 center dot cm-2, coupled with a remarkably low detection limit of 174 mu M. The outcomes of this investigation underscore the promising role of TiO2 nanorods as effective electron mediators in chemical sensor design. This work estab-lishes a foundation for the development of sensors capable of detecting a spectrum of hazardous and toxic chemicals, with a specific emphasis on hydrazine.
引用
收藏
页码:1478 / 1485
页数:8
相关论文
共 41 条
[1]   Rapid Growth of TiO2 Nanoflowers via Low-Temperature Solution Process: Photovoltaic and Sensing Applications [J].
Akhtar, M. Shaheer ;
Umar, Ahmad ;
Sood, Swati ;
Jung, InSung ;
Hegazy, H. H. ;
Algarni, H. .
MATERIALS, 2019, 12 (04)
[2]   Label-Free Electrochemical Sensor Based on Manganese Doped Titanium Dioxide Nanoparticles for Myoglobin Detection: Biomarker for Acute Myocardial Infarction [J].
Al Fatease, Adel ;
Haque, Mazharul ;
Umar, Ahmad ;
Ansari, Shafeeque G. ;
Alhamhoom, Yahya ;
Bin Muhsinah, Abdullatif ;
Mahnashi, Mater H. ;
Guo, Wenjuan ;
Ansari, Zubaida A. .
MOLECULES, 2021, 26 (14)
[3]   TiO2 nanotube arrays via electrochemical anodic oxidation: Prospective electrode for sensing phenyl hydrazine [J].
Ameen, Sadia ;
Akhtar, M. Shaheer ;
Seo, Hyung-Kee ;
Shin, Hyung-Shik .
APPLIED PHYSICS LETTERS, 2013, 103 (06)
[4]   Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p-n heterojunction for increased hydrogen production [J].
Babu, Sundaram Ganesh ;
Vinoth, Ramalingam ;
Kumar, Dharani Praveen ;
Shankar, Muthukonda V. ;
Chou, Hung-Lung ;
Vinodgopal, Kizhanipuram ;
Neppolian, Bernaurdshaw .
NANOSCALE, 2015, 7 (17) :7849-7857
[5]   Cause of Slow Phase Transformation of TiO2 Nanorods [J].
Chen, Y. ;
Kang, K. S. ;
Yoo, K. H. ;
Jyoti, N. ;
Kim, Jaehwan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (46) :19753-19755
[6]   Electroanalytical overview: the electroanalytical sensing of hydrazine [J].
Crapnell, Robert D. ;
Banks, Craig E. .
SENSORS & DIAGNOSTICS, 2022, 1 (01) :71-86
[7]   Variable-temperature Raman scattering study on anatase titanium dioxide nanocrystals [J].
Du, Y. L. ;
Deng, Y. ;
Zhang, M. S. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2006, 67 (11) :2405-2408
[8]   Anatase TiO2 nanoparticles for lithium-ion batteries [J].
El-Deen, S. S. ;
Hashem, A. M. ;
Ghany, A. E. Abdel ;
Indris, S. ;
Ehrenberg, H. ;
Mauger, A. ;
Julien, C. M. .
IONICS, 2018, 24 (10) :2925-2934
[9]   XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation [J].
Erdem, B ;
Hunsicker, RA ;
Simmons, GW ;
Sudol, ED ;
Dimonie, VL ;
El-Aasser, MS .
LANGMUIR, 2001, 17 (09) :2664-2669
[10]   Oxygen Rich Titania: A Dopant Free, High Temperature Stable, and Visible-Light Active Anatase Photocatalyst [J].
Etacheri, Vinodkumar ;
Seery, Michael K. ;
Hinder, Steven J. ;
Pillai, Suresh C. .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (19) :3744-3752