Boundary-adaptive kernel density estimation: the case of (near) uniform density

被引:15
作者
Racine, Jeffrey S. [1 ,2 ]
Li, Qi [3 ]
Wang, Qiaoyu [4 ,5 ]
机构
[1] McMaster Univ, Dept Econ, Hamilton, ON, Canada
[2] McMaster Univ, Grad Program Stat, Hamilton, ON, Canada
[3] Texas A&M Univ, Dept Econ, College Stn, TX USA
[4] Capital Univ Econ & Business, Int Sch Econ & Management, Beijing, Peoples R China
[5] Capital Univ Econ & Business, Int Sch Econ & Management, Beijing 100070, Peoples R China
关键词
Nonparametric; density; boundary; smoothing; CROSS-VALIDATION; TRANSFORMATIONS; INVERSE;
D O I
10.1080/10485252.2023.2250011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider nonparametric kernel estimation of density functions in the bounded-support setting having known support $ [a,b] $ [a,b] using a boundary-adaptive kernel function and data-driven bandwidth selection, where a and b are finite and known prior to estimation. We observe, theoretically and in finite sample settings, that when bounds are known a priori this kernel approach is capable of outperforming even correctly specified parametric models, in the case of the uniform distribution. We demonstrate that this result has implications for modelling a range of densities other than the uniform case. Furthermore, when bounds $ [a,b] $ [a,b] are unknown and the empirical support (i.e. $ [\min (x_i),\max (x_i)] $ [min(xi),max(xi)]) is used in their place, similar behaviour surfaces.
引用
收藏
页码:146 / 164
页数:19
相关论文
共 30 条
[1]   Consistency of the beta kernel density function estimator [J].
Bouezmarni, T ;
Rolin, JM .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (01) :89-98
[2]  
BOWMAN AW, 1984, BIOMETRIKA, V71, P353
[3]   Probability density function estimation using gamma kernels [J].
Chen, SX .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2000, 52 (03) :471-480
[4]   Beta kernel estimators for density functions [J].
Chen, SX .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 31 (02) :131-145
[5]  
Cline D.B.H., 1991, STATISTICS, V22, P69, DOI [10.1080/02331889108802286, DOI 10.1080/02331889108802286]
[6]  
DIGGLE P, 1985, J R STAT SOC C-APPL, V34, P138
[7]   Cross-validation and the estimation of conditional probability densities [J].
Hall, P ;
Racine, J ;
Li, Q .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) :1015-1026
[8]   Infinite order cross-validated local polynomial regression [J].
Hall, Peter G. ;
Racine, Jeffrey S. .
JOURNAL OF ECONOMETRICS, 2015, 185 (02) :510-525
[9]   OPTIMAL SMOOTHING IN SINGLE-INDEX MODELS [J].
HARDLE, W ;
HALL, P ;
ICHIMURA, H .
ANNALS OF STATISTICS, 1993, 21 (01) :157-178
[10]  
Hardle W., 1990, Applied nonparametric regression