Benchmarking the electrochemical parameters of the LiNi0.8Mn0.1Co0.1O2 positive electrode material for Li-ion batteries

被引:7
作者
Savina, Aleksandra A. [1 ]
Abakumov, Artem M. [1 ]
机构
[1] Skolkovo Inst Sci & Technol, Ctr Energy Sci & Technol, Bolshoy Blvd 30,Bld 1, Moscow 121205, Russia
基金
俄罗斯科学基金会;
关键词
Li-ion battery; Cathode material; Ni-rich layered oxide; NMC811; Benchmarking; LAYERED OXIDE CATHODES; STABILITY; DIFFRACTION; DEGRADATION; CHALLENGES; NMC811;
D O I
10.1016/j.heliyon.2023.e21881
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The layered oxide LiNi0.8Mn0.1Co0.1O2 (NMC811, NCM811) is of utmost technological importance as a positive electrode (cathode) material for the forthcoming generation of Li-ion batteries. In this contribution, we have collected 548 research articles comprising >950 records on the electrochemical properties of NMC811 as a cathode material in half-cells with metallic Li counter electrode. The analysis of distribution histograms provided statistically-relevant values of such key characteristics of NMC811 as the first cycle discharge capacity and Coulombic efficiency, discharge capacities at different upper cut-off voltages, capacity fade and capacity retention at the 0.1C-5C current densities. We derived equations describing the relationships between discharge capacity and upper cut-off voltage, Ni content in the LiNixMnyCozO2 compositions in vicinity of NMC811, antisite disorder, and the C-rate. Additionally, the distribution histograms were used for a qualitative comparison between various groups of NMC811 materials, such as benchmarks in various optimizations vs obtained in course of synthesis development, lab-made vs commercial, polycrystalline vs single-crystal. The results of this analysis provide justified values to be used as benchmarks in further works related to optimizing and improving NMC811 and related materials, eliminating random picking up from a huge pool of published data.
引用
收藏
页数:11
相关论文
共 38 条
  • [1] [Anonymous], 2022, Recycling of Power Lithium-Ion Batteries, P1, DOI [10.1002/9783527839902.ch1, DOI 10.1002/9783527839902.CH1]
  • [2] Perspectives for next generation lithium-ion battery cathode materials
    Booth, Samuel G.
    Nedoma, Alisyn J.
    Anthonisamy, Nirmalesh N.
    Baker, Peter J.
    Boston, Rebecca
    Bronstein, Hugo
    Clarke, Simon J.
    Cussen, Edmund J.
    Daramalla, Venkateswarlu
    De Volder, Michael
    Dutton, Sian E.
    Falkowski, Viktoria
    Fleck, Norman A.
    Geddes, Harry S.
    Gollapally, Naresh
    Goodwin, Andrew L.
    Griffin, John M.
    Haworth, Abby R.
    Hayward, Michael A.
    Hull, Stephen
    Inkson, Beverley J.
    Johnston, Beth J.
    Lu, Ziheng
    MacManus-Driscoll, Judith L.
    Martinez De Irujo Labalde, Xabier
    McClelland, Innes
    McCombie, Kirstie
    Murdock, Beth
    Nayak, Debasis
    Park, Seungkyu
    Perez, Gabriel E.
    Pickard, Chris J.
    Piper, Louis F. J.
    Playford, Helen Y.
    Price, Simon
    Scanlon, David O.
    Stallard, Joe C.
    Tapia-Ruiz, Nuria
    West, Anthony R.
    Wheatcroft, Laura
    Wilson, Megan
    Zhang, Li
    Zhi, Xuan
    Zhu, Bonan
    Cussen, Serena A.
    [J]. APL MATERIALS, 2021, 9 (10)
  • [3] Recent Advances in Enhanced Performance of Ni-Rich Cathode Materials for Li-Ion Batteries: A Review
    Butt, Annam
    Ali, Ghulam
    Kubra, Khadija Tul
    Sharif, Rehana
    Salman, Ayesha
    Bashir, Muzaffar
    Jamil, Sidra
    [J]. ENERGY TECHNOLOGY, 2022, 10 (03)
  • [4] Boosting Reaction Homogeneity in High-Energy Lithium-Ion Battery Cathode Materials
    Cha, Hyungyeon
    Kim, Junhyeok
    Lee, Hyomyung
    Kim, Namhyung
    Hwang, Jaeseong
    Sung, Jaekyung
    Yoon, Moonsu
    Kim, Kyungho
    Cho, Jaephil
    [J]. ADVANCED MATERIALS, 2020, 32 (39)
  • [5] Recent Progress and Perspective of Advanced High-Energy Co-Less Ni-Rich Cathodes for Li-Ion Batteries: Yesterday, Today, and Tomorrow
    Choi, Ji Ung
    Voronina, Natalia
    Sun, Yang-Kook
    Myung, Seung-Taek
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (42)
  • [6] Progress of Single-Crystal Nickel-Cobalt-Manganese Cathode Research
    Chu, Ruixia
    Zou, Yujian
    Zhu, Peidong
    Tan, Shiwei
    Qiu, Fangyuan
    Fu, Wenjun
    Niu, Fu
    Huang, Wanyou
    [J]. ENERGIES, 2022, 15 (23)
  • [7] Challenges for Rechargeable Li Batteries
    Goodenough, John B.
    Kim, Youngsik
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (03) : 587 - 603
  • [8] Electrochemical Characterization of Battery Materials in 2-Electrode Half-Cell Configuration: A Balancing Act Between Simplicity and Pitfalls
    Heubner, Christian
    Maletti, Sebastian
    Lohrberg, Oliver
    Lein, Tobias
    Liebmann, Tobias
    Nickol, Alexander
    Schneider, Michael
    Michaelis, Alexander
    [J]. BATTERIES & SUPERCAPS, 2021, 4 (08) : 1310 - 1322
  • [9] NCA, NCM811, and the Route to Ni-Richer Lithium-Ion Batteries
    Julien, Christian M.
    Mauger, Alain
    [J]. ENERGIES, 2020, 13 (23)
  • [10] Effect of Ambient Storage on the Degradation of Ni-Rich Positive Electrode Materials (NMC811) for Li-Ion Batteries
    Jung, Roland
    Morasch, Robert
    Karayaylali, Pinar
    Phillips, Katherine
    Maglia, Filippo
    Stinner, Christoph
    Shao-Horn, Yang
    Gasteiger, Hubert A.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (02) : A132 - A141