Analysis of a direct discretization of the Maxwell eigenproblem

被引:0
作者
Du, Zhijie [1 ]
Duan, Huoyuan [2 ]
机构
[1] Wuhan Univ Technol, Sch Nat Sci, Wuhan 430070, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
Maxwell eigenproblem; Finite element method; Convergence; FINITE-ELEMENT-METHOD; REGULARIZATION; SINGULARITIES; BOUNDARY; FAMILY;
D O I
10.1016/j.aml.2023.108922
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A direct discretization is analyzed for the computation of the eigenvalues of the Maxwell eigenproblem, where the finite element space (P-k)(d) + del Pk+1 with the pair of the kth order P-k and (k + 1)th order Pk+1 Lagrange element spaces (k >= 1) on generic simplexes are used. The finite element space directly mimics the Hodge decomposition of the second-kind kth order Nedelec (P-k)(d) elements while the finite element formulation directly uses the classical variational formulation. We prove the convergence of the resulting finite element solutions.
引用
收藏
页数:6
相关论文
共 26 条