Application of Deep Learning in Cancer Prognosis Prediction Model

被引:3
作者
Zhang, Heng [1 ,2 ,3 ,4 ]
Xi, Qianyi [1 ,2 ,3 ,4 ,5 ]
Zhang, Fan [1 ,2 ,3 ,4 ,5 ]
Li, Qixuan [1 ,2 ,3 ,4 ,5 ]
Jiao, Zhuqing [5 ]
Ni, Xinye [1 ,2 ,3 ,4 ,6 ]
机构
[1] Nanjing Med Univ, Changzhou 2 Peoples Hosp, Dept Radiotherapy Oncol, Changzhou, Peoples R China
[2] Jiangsu Prov Engn Res Ctr Med Phys, Changzhou, Peoples R China
[3] Nanjing Med Univ, Med Phys Res Ctr, Changzhou, Peoples R China
[4] Key Lab Med Phys Changzhou, Changzhou, Peoples R China
[5] Changzhou Univ, Sch Microelect & Control Engn, Changzhou, Peoples R China
[6] Nanjing Med Univ, Changzhou 2 Peoples Hosp, Dept Radiotherapy Oncol, Gehu Rd 68, Changzhou 213003, Peoples R China
关键词
deep learning; artificial intelligence; cancer prognosis prediction; cancer prognostic model; SURVIVAL; VALIDATION; DIAGNOSIS; ALGORITHM; VISION;
D O I
10.1177/15330338231199287
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
As an important branch of artificial intelligence and machine learning, deep learning (DL) has been widely used in various aspects of cancer auxiliary diagnosis, among which cancer prognosis is the most important part. High-accuracy cancer prognosis is beneficial to the clinical management of patients with cancer. Compared with other methods, DL models can significantly improve the accuracy of prediction. Therefore, this article is a systematic review of the latest research on DL in cancer prognosis prediction. First, the data type, construction process, and performance evaluation index of the DL model are introduced in detail. Then, the current mainstream baseline DL cancer prognosis prediction models, namely, deep neural networks, convolutional neural networks, deep belief networks, deep residual networks, and vision transformers, including network architectures, the latest application in cancer prognosis, and their respective characteristics, are discussed. Next, some key factors that affect the predictive performance of the model and common performance enhancement techniques are listed. Finally, the limitations of the DL cancer prognosis prediction model in clinical practice are summarized, and the future research direction is prospected. This article could provide relevant researchers with a comprehensive understanding of DL cancer prognostic models and is expected to promote the research progress of cancer prognosis prediction.
引用
收藏
页数:10
相关论文
共 45 条
[1]   Ensembles of Convolutional Neural Networks for Survival Time Estimation of High-Grade Glioma Patients from Multimodal MRI [J].
Ben Ahmed, Kaoutar ;
Hall, Lawrence O. ;
Goldgof, Dmitry B. ;
Gatenby, Robert .
DIAGNOSTICS, 2022, 12 (02)
[2]   Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review [J].
Bernal, Jose ;
Kushibar, Kaisar ;
Asfaw, Daniel S. ;
Valverde, Sergi ;
Oliver, Arnau ;
Marti, Robert ;
Llado, Xavier .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 95 :64-81
[3]   Deep learning enabled prediction of 5-year survival in pediatric genitourinary rhabdomyosarcoma [J].
Bhambhvani, Hriday P. ;
Zamora, Alvaro ;
Velaer, Kyla ;
Greenberg, Daniel R. ;
Sheth, Kunj R. .
SURGICAL ONCOLOGY-OXFORD, 2021, 36 :23-27
[4]   Deep Learning in Medical Image Analysis [J].
Chan, Heang-Ping ;
Samala, Ravi K. ;
Hadjiiski, Lubomir M. ;
Zhou, Chuan .
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS: CHALLENGES AND APPLICATIONS, 2020, 1213 :3-21
[5]   Iterated cross validation method for prediction of survival in diffuse large B-cell lymphoma for small size dataset [J].
Chang, Chin-Chuan ;
Chen, Chien-Hua ;
Hsieh, Jer-Guang ;
Jeng, Jyh-Horng .
SCIENTIFIC REPORTS, 2023, 13 (01)
[6]   Deep Learning Radiomics of Preoperative Breast MRI for Prediction of Axillary Lymph Node Metastasis in Breast Cancer [J].
Chen, Yanhong ;
Wang, Lijun ;
Dong, Xue ;
Luo, Ran ;
Ge, Yaqiong ;
Liu, Huanhuan ;
Zhang, Yuzhen ;
Wang, Dengbin .
JOURNAL OF DIGITAL IMAGING, 2023, 36 (04) :1323-1331
[7]   A guide to deep learning in healthcare [J].
Esteva, Andre ;
Robicquet, Alexandre ;
Ramsundar, Bharath ;
Kuleshov, Volodymyr ;
DePristo, Mark ;
Chou, Katherine ;
Cui, Claire ;
Corrado, Greg ;
Thrun, Sebastian ;
Dean, Jeff .
NATURE MEDICINE, 2019, 25 (01) :24-29
[8]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[9]   Automated Survival Prediction in Metastatic Cancer Patients Using High-Dimensional Electronic Medical Record Data [J].
Gensheimer, Michael F. ;
Henry, A. Solomon ;
Wood, Douglas J. ;
Hastie, Trevor J. ;
Aggarwal, Sonya ;
Dudley, Sara A. ;
Pradhan, Pooja ;
Banerjee, Imon ;
Cho, Eunpi ;
Ramchandran, Kavitha ;
Pollom, Erqi ;
Koong, Albert C. ;
Rubin, Daniel L. ;
Chang, Daniel T. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2019, 111 (06) :568-574
[10]   Recent advances in convolutional neural networks [J].
Gu, Jiuxiang ;
Wang, Zhenhua ;
Kuen, Jason ;
Ma, Lianyang ;
Shahroudy, Amir ;
Shuai, Bing ;
Liu, Ting ;
Wang, Xingxing ;
Wang, Gang ;
Cai, Jianfei ;
Chen, Tsuhan .
PATTERN RECOGNITION, 2018, 77 :354-377