Context-aware lightweight remote-sensing image super-resolution network

被引:0
|
作者
Peng, Guangwen [1 ]
Xie, Minghong [1 ]
Fang, Liuyang [2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming, Peoples R China
[2] Yunnan Key Lab Digital Commun, Kunming, Peoples R China
关键词
convolutional neural network; transformer; remote-sensing image super-resolution; lightweight network; context-aware;
D O I
10.3389/fnbot.2023.1220166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, remote-sensing image super-resolution (RSISR) methods based on convolutional neural networks (CNNs) have achieved significant progress. However, the limited receptive field of the convolutional kernel in CNNs hinders the network's ability to effectively capture long-range features in images, thus limiting further improvements in model performance. Additionally, the deployment of existing RSISR models to terminal devices is challenging due to their high computational complexity and large number of parameters. To address these issues, we propose a Context-Aware Lightweight Super-Resolution Network (CALSRN) for remote-sensing images. The proposed network primarily consists of Context-Aware Transformer Blocks (CATBs), which incorporate a Local Context Extraction Branch (LCEB) and a Global Context Extraction Branch (GCEB) to explore both local and global image features. Furthermore, a Dynamic Weight Generation Branch (DWGB) is designed to generate aggregation weights for global and local features, enabling dynamic adjustment of the aggregation process. Specifically, the GCEB employs a Swin Transformer-based structure to obtain global information, while the LCEB utilizes a CNN-based cross-attention mechanism to extract local information. Ultimately, global and local features are aggregated using the weights acquired from the DWGB, capturing the global and local dependencies of the image and enhancing the quality of super-resolution reconstruction. The experimental results demonstrate that the proposed method is capable of reconstructing high-quality images with fewer parameters and less computational complexity compared with existing methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Contextual Transformation Network for Lightweight Remote-Sensing Image Super-Resolution
    Wang, Shunzhou
    Zhou, Tianfei
    Lu, Yao
    Di, Huijun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] FeNet: Feature Enhancement Network for Lightweight Remote-Sensing Image Super-Resolution
    Wang, Zheyuan
    Li, Liangliang
    Xue, Yuan
    Jiang, Chenchen
    Wang, Jiawen
    Sun, Kaipeng
    Ma, Hongbing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] FeNet: Feature Enhancement Network for Lightweight Remote-Sensing Image Super-Resolution
    Wang, Zheyuan
    Li, Liangliang
    Xue, Yuan
    Jiang, Chenchen
    Wang, Jiawen
    Sun, Kaipeng
    Ma, Hongbing
    IEEE Transactions on Geoscience and Remote Sensing, 2022, 60
  • [4] MambaFormerSR: A Lightweight Model for Remote-Sensing Image Super-Resolution
    Zhi, Ruicong
    Fan, Xiaopei
    Shi, Jingye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [5] Dual Attention Fusion Enhancement Network for Lightweight Remote-Sensing Image Super-Resolution
    Chen, Wangyou
    Qu, Shenming
    Luo, Laigan
    Lu, Yongyong
    REMOTE SENSING, 2025, 17 (06)
  • [6] Lightweight Mars remote sensing image super-resolution reconstruction network
    Geng M.
    Wu F.
    Wang D.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (12): : 1487 - 1498
  • [7] Lightweight Remote-Sensing Image Super-Resolution via Re-Parameterized Feature Distillation Network
    Zhang, Tianlin
    Bian, Chunjiang
    Zhang, Xiaoming
    Chen, Hongzhen
    Chen, Shi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [8] Single Image Super-Resolution with Application to Remote-Sensing Image
    Deeba, Farah
    Dharejo, Fayaz Ali
    Zhou, Yuanchun
    Ghaffar, Abdul
    Memon, Mujahid Hussain
    Kun, She
    2020 GLOBAL CONFERENCE ON WIRELESS AND OPTICAL TECHNOLOGIES (GCWOT), 2020,
  • [9] CASR: a context-aware residual network for single-image super-resolution
    Wu, Yirui
    Ji, Xiaozhong
    Ji, Wanting
    Tian, Yan
    Zhou, Helen
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (18): : 14533 - 14548
  • [10] Context-Aware Residual Network with Promotion Gates for Single Image Super-Resolution
    Ji, Xiaozhong
    Wu, Yirui
    Lu, Tong
    MULTIMEDIA MODELING (MMM 2020), PT II, 2020, 11962 : 136 - 147