Molecule-Assisted Chemical Bath Deposition of Tin Oxide Electron Transport Layers in Perovskite Solar Cells

被引:2
作者
Wu, Jiarui [1 ]
Zhang, Ningjun [1 ]
Sun, Jingsong [1 ,2 ,3 ]
Yang, Weichuang [1 ]
Sha, Xuan [1 ]
Zhang, Luyan [1 ]
Long, Hanlin [1 ]
Ying, Zhiqin [1 ]
Yang, Xi [1 ]
Liu, Shenghui [2 ,3 ]
Shou, Chunhui [2 ,3 ]
Jin, Shengli [2 ]
Zhan, Zhaolin [4 ]
Sheng, Jiang [1 ]
Ye, Jichun [1 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Prov Engn Res Ctr Energy Optoelect Mat &, Ningbo 315201, Peoples R China
[2] Zhejiang Energy Grp, Key Lab Solar Energy Utilizat & Energy Saving Tech, Hangzhou 310003, Zhejiang, Peoples R China
[3] Zhejiang Baima Lake Lab Co Ltd, Hangzhou 310000, Zhejiang, Peoples R China
[4] Kunming Univ Sci & Technol, Sch Mat Sci & Engn, Kunming 650093, Peoples R China
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2023年 / 220卷 / 14期
关键词
chelation reaction; chemical bath deposition; electron transport layer; perovskite solar cells; tin oxide; PHOTOCATALYTIC ACTIVITY; SNO2; EFFICIENT; FILM;
D O I
10.1002/pssa.202200897
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Chemical bath deposition (CBD) is a widely used approach to deposit the tin oxide (SnO2) electron transport layer (ETL) in the perovskite solar cell (PSC). However, the defect states in the CBD-resulted SnO2 ETLs limit the electron extraction/transport from the perovskite to the ETL and lead to poor PSC performance. Herein, ethylenediaminetetraacetic acid dipotassium (EDTA-2K) is used as an additive in the CBD precursor of the SnO2 ETL, which results in the chelation of Sn2+ and EDTA during the hydrolysis process. This strategy decreases the concentration of free Sn2+ in the precursor for hydrolysis and slows down the CBD process, thus attributes to the decreased surface defect states as well as the enhanced conductivity of the ETL. As a result, the EDTA-2K additive makes the CBD SnO2 ETL with efficient electron extraction and transporting capability. The champion device achieves a power conversion efficiency (PCE) of 21.87%, which is significantly higher than that of the pristine CBD SnO2-based device (20.25%). In addition, the device with an active area of 1.21 cm(2) achieves a high PCE of 19.23%. This strategy makes the CBD SnO2 an excellent ETL candidate for the development of low-cost and large-scale PSCs.
引用
收藏
页数:7
相关论文
共 42 条
[1]   Trapped charge-driven degradation of perovskite solar cells [J].
Ahn, Namyoung ;
Kwak, Kwisung ;
Jang, Min Seok ;
Yoon, Heetae ;
Lee, Byung Yang ;
Lee, Jong-Kwon ;
Pikhitsa, Peter V. ;
Byun, Junseop ;
Choi, Mansoo .
NATURE COMMUNICATIONS, 2016, 7
[2]   Tin Oxide Electron-Selective Layers for Efficient, Stable, and Scalable Perovskite Solar Cells [J].
Altinkaya, Cesur ;
Aydin, Erkan ;
Ugur, Esma ;
Isikgor, Furkan H. ;
Subbiah, Anand S. ;
De Bastiani, Michele ;
Liu, Jiang ;
Babayigit, Aslihan ;
Allen, Thomas G. ;
Laquai, Frederic ;
Yildiz, Abdullah ;
De Wolf, Stefaan .
ADVANCED MATERIALS, 2021, 33 (15)
[3]   High performance planar perovskite solar cells by ZnO electron transport layer engineering [J].
An, Qingzhi ;
Fassl, Paul ;
Hofstetter, Yvonne J. ;
Becker-Koch, David ;
Bausch, Alexandra ;
Hopkinson, Paul E. ;
Vaynzof, Yana .
NANO ENERGY, 2017, 39 :400-408
[4]   PV cells and modules - State of the art, limits and trends [J].
Benda, Vitezslav ;
Cerna, Ladislava .
HELIYON, 2020, 6 (12)
[5]   Dynamic Antisolvent Engineering for Spin Coating of 10 x 10 cm2 Perovskite Solar Module Approaching 18% [J].
Bu, Tongle ;
Liu, Xueping ;
Li, Jing ;
Huang, Wenchao ;
Wu, Zhengli ;
Huang, Fuzhi ;
Cheng, Yi-Bing ;
Zhong, Jie .
SOLAR RRL, 2020, 4 (02)
[6]   Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module [J].
Bu, Tongle ;
Li, Jing ;
Zheng, Fei ;
Chen, Weijian ;
Wen, Xiaoming ;
Ku, Zhiliang ;
Peng, Yong ;
Zhong, Jie ;
Cheng, Yi-Bing ;
Huang, Fuzhi .
NATURE COMMUNICATIONS, 2018, 9
[7]   Dual Passivation of Perovskite and SnO2 for High-Efficiency MAPbI3 Perovskite Solar Cells [J].
Chen, Yali ;
Zuo, Xuejiao ;
He, Yiyang ;
Qian, Fang ;
Zuo, Shengnan ;
Zhang, Yalan ;
Liang, Lei ;
Chen, Zuqin ;
Zhao, Kui ;
Liu, Zhike ;
Gou, Jing ;
Liu, Shengzhong .
ADVANCED SCIENCE, 2021, 8 (05)
[8]   Analysis of the UV-Ozone-Treated SnO2 Electron Transporting Layer in Planar Perovskite Solar Cells for High Performance and Reduced Hysteresis [J].
Fabiola Mendez, Perla ;
Muhammed, Salim K. M. ;
Barea, Eva M. ;
Masi, Sofia ;
Mora-Sero, Ivan .
SOLAR RRL, 2019, 3 (09)
[9]   Efficiency improved for inverted polymer solar cells with electrostatically self-assembled BenMelm-CI ionic liquid layer as cathode interface layer [J].
Fu, Ping ;
Huang, Linquan ;
Yu, Wei ;
Yang, Dong ;
Liu, Guiji ;
Zhou, Lingyu ;
Zhang, Jian ;
Li, Can .
NANO ENERGY, 2015, 13 :275-282
[10]   UV-Sintered Low-Temperature Solution-Processed SnO2 as Robust Electron Transport Layer for Efficient Planar Heterojunction Perovskite Solar Cells [J].
Huang, Like ;
Sun, Xiaoxiang ;
Li, Chang ;
Xu, Jie ;
Xu, Rui ;
Du, Yangyang ;
Ni, Jian ;
Cai, Hongkun ;
Li, Juan ;
Hu, Ziyang ;
Zhang, Jianjun .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (26) :21909-21920