Global solutions to a nonlinear Fokker-Planck equation

被引:0
作者
Zhang, Xingang [1 ]
Liu, Zhe [2 ]
Ding, Ling [3 ]
Tang, Bo [3 ,4 ]
机构
[1] Nanyang Normal Univ, Sch Comp Sci & Technol, Nanyang 473061, Henan, Peoples R China
[2] Nanyang Normal Univ, Nanyang 473061, Henan, Peoples R China
[3] Hubei Univ Arts & Sci, Sch Math & Stat, Xiangyang 441053, Hubei, Peoples R China
[4] Hubei Univ Arts & Sci, Hubei Key Lab Power Syst Design & Test Elect Vehic, Xiangyang 441053, Hubei, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 07期
基金
中国国家自然科学基金;
关键词
nonlinear Fokker-Planck equation; global existence; energy method; Cauchy problem; Priori estimates; CLASSICAL-SOLUTIONS; BOLTZMANN-EQUATION; EXISTENCE;
D O I
10.3934/math.2023822
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct global solutions to the Cauchy problem on a nonlinear Fokker -Planck equation near Maxwellian with small-amplitude initial data in Sobolev space Hx2L2v by a refined nonlinear energy method. Compared with the results of Liao et al. (Global existence and decay rates of the solutions near Maxwellian for non-linear Fokker-Planck equations, J. Stat. Phys., 173 (2018), 222-241.), the regularity assumption on the initial data is much weaker.
引用
收藏
页码:16115 / 16126
页数:12
相关论文
共 19 条
[1]  
Adams R.A., 2003, Sobolev Spaces, Vsecond
[2]  
[Anonymous], 1988, BOLTZMANN EQUATION I
[3]   GLOBAL CLASSICAL SOLUTIONS CLOSE TO EQUILIBRIUM TO THE VLASOV-FOKKER-PLANCK-EULER SYSTEM [J].
Carrillo, Jose A. ;
Duan, Renjun ;
Moussa, Ayman .
KINETIC AND RELATED MODELS, 2011, 4 (01) :227-258
[4]   ON THE FOKKER-PLANCK-BOLTZMANN EQUATION [J].
DIPERNA, RJ ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 120 (01) :1-23
[5]   On the Cauchy problem for the Boltzmann equation in the whole space:: Global existence and uniform stability in Lξ2 (HxN) [J].
Duan, Renjun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (12) :3204-3234
[6]   TIME-PERIODIC SOLUTIONS OF THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM [J].
Duan, Renjun ;
Liu, Shuangqian .
ACTA MATHEMATICA SCIENTIA, 2015, 35 (04) :876-886
[7]   A Kinetic Flocking Model with Diffusion [J].
Duan, Renjun ;
Fornasier, Massimo ;
Toscani, Giuseppe .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 300 (01) :95-145
[8]  
Golse F, 2015, Arxiv, DOI arXiv:1506.01908
[9]   The Boltzmann equation in the whole space [J].
Guo, Y .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (04) :1081-1094
[10]   ON THE VLASOV-POISSON-FOKKER-PLANCK EQUATION NEAR MAXWELLIAN [J].
Hwang, Hyung Ju ;
Jang, Juhi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (03) :681-691