Microstructural evolution, strengthening and high thermal conductivity mechanisms of FeCrV-based medium-entropy alloys with Laves phase precipitation formed by adding minimal Ti

被引:17
作者
Cheng, Zhaoyi [1 ,2 ,3 ]
Sun, Jianrong [1 ,2 ,3 ]
Cui, Jinghao [1 ,4 ]
Chen, Da [5 ]
Ren, Junqiang [6 ]
Wang, Tao [4 ]
Chang, Hailong [1 ,2 ,3 ]
Tai, Pengfei [1 ,2 ]
Zhang, Linqi [1 ,2 ,3 ,4 ]
Tian, Yinan [1 ,2 ,3 ]
Wei, Yuting [7 ]
Li, Jian [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nucl Sci & Technol, Beijing 100049, Peoples R China
[3] Adv Energy Sci & Technol Guangdong Lab, Huizhou 516000, Peoples R China
[4] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China
[5] Southeast Univ, Sch Energy & Environm, Nanjing 210096, Peoples R China
[6] Lanzhou Univ Technol, Dept Mat Sci & Engn, State Key Lab Adv Proc & Recycling Nonferrous Met, Lanzhou 730050, Peoples R China
[7] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Medium-entropy alloys; Microstructural evolution; Strengthening mechanisms; High thermal conductivity mechanisms; Compressive plastic deformation; MATERIALS CHALLENGES; HEAT; TRANSPORT; CORROSION; DUCTILITY; BEHAVIOR; PERIOD; LAYER;
D O I
10.1016/j.matchar.2023.112860
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
FeCrVTix medium-entropy alloys (MEAs) with BCC matrix and Laves precipitation have high yield strength (1097-1493 MPa), good fracture strain (27.1-47.7%) and excellent thermal conductivity (42.2-69.7 W/(m center dot K) at 673-1273 K), it is expected to be widely applied in the fields of advanced nuclear energy and aerospace. However, what is this kind of MEAs strengthening and high thermal conductivity mechanisms? According to the experimental results and theoretical calculations, a mixed-strengthening-mechanism model dominated by precipitation and fine-grain strengthening is proposed, it can well explain the increase in yield strength of FeCrV-based MEAs due to Ti-added. Meanwhile, the Laves-phase precipitation formed by adding Ti improves the compressive plastic deformation through grain refinement, crack bridging and crack deflection. Moreover, the high thermal conductivity of FeCrVTix MEAs is primarily due to the inelastic scattering of phonons and electrons in the medium/high-temperature regions. Based on the above mechanisms, the mechanical and thermal properties of MEAs/HEAs can be regulated in the pre-design and post-treatment stages, which provide new ideas and methods for the design and performance-optimization of high-performance structural materials.
引用
收藏
页数:20
相关论文
共 86 条
[1]   High-Temperature Thermal Conductivity of SAV-1 Aluminum Alloy [J].
Abdukadyrova, I. Kh ;
Alikulov, Sh A. ;
Akhmedzhanov, F. R. ;
Baitelesov, S. A. ;
Boltaboev, A. F. ;
Salikhbaev, U. S. .
ATOMIC ENERGY, 2014, 116 (02) :100-104
[2]   Materials challenges for nuclear systems [J].
Allen, Todd ;
Busby, Jeremy ;
Meyer, Mitch ;
Petti, David .
MATERIALS TODAY, 2010, 13 (12) :14-23
[3]   The effects of mechanical alloying on the physical and thermal properties of CuCrFeTiV alloy [J].
Antao, F. ;
Dias, M. ;
Correia, J. B. ;
Galatanu, A. ;
Galatanu, M. ;
Mardolcar, U. V. ;
Myakush, A. ;
Cruz, M. M. ;
Casaca, A. ;
da Silva, R. C. ;
Alves, E. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2021, 263
[4]   Physical properties of face-centered cubic structured high-entropy alloys: Effects of NiCo, NiFe, and NiCoFe alloying with Mn, Cr, and Pd [J].
Bag, Pallab ;
Su, Yi-Cheng ;
Kuo, Yung-Kang ;
Lai, Yi-Cheng ;
Wu, Shyi-Kaan .
PHYSICAL REVIEW MATERIALS, 2021, 5 (08)
[5]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[6]  
Boissonnet G., 2019, J. Mater. Appl, V8, P59, DOI [10.32732/jma.2019.8.2.59, DOI 10.32732/JMA.2019.8.2.59]
[7]   Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J].
Bu, Yeqiang ;
Wu, Yuan ;
Lei, Zhifeng ;
Yuan, Xiaoyuan ;
Wu, Honghui ;
Feng, Xiaobin ;
Liu, Jiabin ;
Ding, Jun ;
Lu, Yang ;
Wang, Hongtao ;
Lu, Zhaoping ;
Yang, Wei .
MATERIALS TODAY, 2021, 46 :28-34
[8]   Additive manufacturing of high-entropy alloys by thermophysical calculations and in situ alloying [J].
Cagirici, Mehmet ;
Wang, Pan ;
Ng, Fern Lan ;
Nai, Mui Ling Sharon ;
Ding, Jun ;
Wei, Jun .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 94 :53-66
[9]   Microstructure and mechanical properties of Al20-xCr20+0.5xFe20Co20Ni20+0.5x high entropy alloys [J].
Chen, Chen ;
Pang, Shujie ;
Cheng, Yangyang ;
Zhang, Tao .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 659 :279-287
[10]   Stress-controlled fatigue of HfNbTaTiZr high-entropy alloy and associated deformation and fracture mechanisms [J].
Chen, Shuying ;
Li, Weidong ;
Wang, Ling ;
Yuan, Tao ;
Tong, Yang ;
Tseng, Ko-Kai ;
Yeh, Jien-Wei ;
Xiong, Qingang ;
Wu, Zhenggang ;
Zhang, Fan ;
Liu, Tingkun ;
Li, Kun ;
Liaw, Peter K. .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 114 :191-205