Accurate Prediction of Transcriptional Activity of Single Missense Variants in HIV Tat with Deep Learning

被引:2
作者
Derbel, Houssemeddine [1 ]
Giacoletto, Christopher J. J. [2 ]
Benjamin, Ronald [1 ,2 ]
Chen, Gordon R. [1 ]
Schiller, Martin R. R. [1 ,2 ]
Liu, Qian [1 ,2 ]
机构
[1] Univ Nevada Las Vegas, Nevada Inst Personalized Med, 4505 S Maryland Pkwy, Las Vegas, NV 89154 USA
[2] Univ Nevada Las Vegas, Coll Sci, Sch Life Sci, 4505 S Maryland Pkwy, Las Vegas, NV 89154 USA
关键词
variant effect; deep learning; HIV; tat protein;
D O I
10.3390/ijms24076138
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tat is an essential gene for increasing the transcription of all HIV genes, and affects HIV replication, HIV exit from latency, and AIDS progression. The Tat gene frequently mutates in vivo and produces variants with diverse activities, contributing to HIV viral heterogeneity as well as drug-resistant clones. Thus, identifying the transcriptional activities of Tat variants will help to better understand AIDS pathology and treatment. We recently reported the missense mutation landscape of all single amino acid Tat variants. In these experiments, a fraction of double missense alleles exhibited intragenic epistasis. However, it is too time-consuming and costly to determine the effect of the variants for all double mutant alleles through experiments. Therefore, we propose a combined GigaAssay/deep learning approach. As a first step to determine activity landscapes for complex variants, we evaluated a deep learning framework using previously reported GigaAssay experiments to predict how transcription activity is affected by Tat variants with single missense substitutions. Our approach achieved a 0.94 Pearson correlation coefficient when comparing the predicted to experimental activities. This hybrid approach can be extensible to more complex Tat alleles for a better understanding of the genetic control of HIV genome transcription.
引用
收藏
页数:14
相关论文
共 19 条
[1]  
[Anonymous], 2018, Basic Statistics | HIV Basics | HIV/AIDS | CDC
[2]   GigaAssay - An adaptable high-throughput saturation mutagenesis assay platform [J].
Benjamin, Ronald ;
Giacoletto, Christopher J. ;
FitzHugh, Zachary T. ;
Eames, Danielle ;
Buczek, Lindsay ;
Wu, Xiaogang ;
Newsome, Jacklyn ;
Han, Mira, V ;
Pearson, Tony ;
Wei, Zhi ;
Banerjee, Atoshi ;
Brown, Lancer ;
Valente, Liz J. ;
Shen, Shirley ;
Deng, Hong-Wen ;
Schiller, Martin R. .
GENOMICS, 2022, 114 (04)
[3]  
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
[4]   Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4 [J].
Gu, Jianyou ;
Babayeva, Nigar D. ;
Suwa, Yoshiaki ;
Baranovskiy, Andrey G. ;
Price, David H. ;
Tahirov, Tahir H. .
CELL CYCLE, 2014, 13 (11)
[5]   Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1026-1034
[6]  
Kingma DP, 2014, ADV NEUR IN, V27
[7]   Prioritizing genes for systematic variant effect mapping [J].
Kuang, Da ;
Truty, Rebecca ;
Weile, Jochen ;
Johnson, Britt ;
Nykamp, Keith ;
Araya, Carlos ;
Nussbaum, Robert L. ;
Roth, Frederick P. .
BIOINFORMATICS, 2020, 36 (22-23) :5448-5455
[8]   Evolutionary-scale prediction of atomic-level protein structure with a language model [J].
Lin, Zeming ;
Akin, Halil ;
Rao, Roshan ;
Hie, Brian ;
Zhu, Zhongkai ;
Lu, Wenting ;
Smetanin, Nikita ;
Verkuil, Robert ;
Kabeli, Ori ;
Shmueli, Yaniv ;
Costa, Allan dos Santos ;
Fazel-Zarandi, Maryam ;
Sercu, Tom ;
Candido, Salvatore ;
Rives, Alexander .
SCIENCE, 2023, 379 (6637) :1123-1130
[9]  
McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, 10.48550/arXiv.1802.03426, DOI 10.48550/ARXIV.1802.03426, 10.21105/joss.00861, DOI 10.21105/JOSS.00861]
[10]  
Meier J, 2021, ADV NEUR IN, V34