Cyclic Superelastic Behavior of Iron-Based Fe-Ni-Co-Al-Ti-Nb Shape Memory Alloy

被引:5
|
作者
Lauhoff, C. [1 ]
Remich, V. [1 ]
Giordana, M. F. [2 ]
Sobrero, C. [2 ]
Niendorf, T. [1 ]
Krooss, P. [1 ]
机构
[1] Univ Kassel, Inst Werkstofftechn, Monchebergstr 3, D-34125 Kassel, Germany
[2] Inst Phys Rosario, UNR, IFIR, CONICET, Bv 27 Febrero 210 Bis, RA-2000 Rosario, Argentina
关键词
heat treatment; nanoprecipitates; phase transformation; shape memory materials; superelasticity; SINGLE; DEFORMATION; TRANSFORMATION; MARTENSITE; MECHANISMS;
D O I
10.1007/s11665-022-07745-w
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Iron-based shape memory alloys came into focus as promising candidate materials for large-scale structural applications owing to their cost-efficiency. In the present work, the superelastic properties of a recently introduced Fe-Ni-Co-Al-Ti-Nb shape memory alloy are investigated. For < 001 >-oriented single-crystalline material in aged condition (650 degrees/6 h), an incremental strain test reveals excellent superelasticity at -130 degrees with fully reversible strains up to about 6%. Under cycling loading at different test temperatures, however, the alloy system investigated suffers limited functional stability.
引用
收藏
页码:8593 / 8599
页数:7
相关论文
共 50 条
  • [1] Cyclic Superelastic Behavior of Iron-Based Fe-Ni-Co-Al-Ti-Nb Shape Memory Alloy
    C. Lauhoff
    V. Remich
    M. F. Giordana
    C. Sobrero
    T. Niendorf
    P. Krooß
    Journal of Materials Engineering and Performance, 2023, 32 : 8593 - 8599
  • [2] On the superelastic behavior during spherical nanoindentation of a Ni-Ti shape memory alloy
    Li, Hang
    Gao, Zhe
    Suh, Jin-Yoo
    Han, Heung Nam
    Ramamurty, Upadrasta
    Jang, Jae-il
    MATERIALIA, 2024, 33
  • [3] Texture Formation in a Polycrystalline Fe-Ni-Co-Al-Ti-B Shape Memory Alloy
    Lee, Doyup
    Omori, Toshihiro
    Han, Kwangsik
    Hayakawa, Yasuyuki
    Kainuma, Ryosuke
    ISIJ INTERNATIONAL, 2020, 60 (12) : 2973 - 2982
  • [4] Modeling of hydrogen effect on the superelastic behavior of Ni-Ti shape memory alloy wires
    Lachiguer, Amani
    Bouby, Celine
    Gamaoun, Fehmi
    Bouraoui, Tarak
    Ben Zineb, Tarak
    SMART MATERIALS AND STRUCTURES, 2016, 25 (11)
  • [5] Alloy design for Fe-Ni-Co-Al-based superelastic alloys
    Tanaka, Y.
    Kainuma, R.
    Omori, T.
    Ishida, K.
    MATERIALS TODAY-PROCEEDINGS, 2015, 2 : 485 - 492
  • [6] The Superelastic Stability of Nanocrystalline Ni-51 At.% Ti Shape Memory Alloy
    Wang, Taotao
    Guo, Fangmin
    Li, Yapeng
    Ye, Junjie
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (09) : 4633 - 4639
  • [7] Superelastic stability of nanocrystalline Ni47Ti50Fe3 shape memory alloy
    Wang, Taotao
    Guo, Fangmin
    Ai, Taotao
    Li, Yapeng
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 3048 - 3054
  • [8] FeMnNiAl Iron-Based Shape Memory Alloy: Promises and Challenges
    Abuzaid, W.
    Wu, Y.
    Sidharth, R.
    Brenne, F.
    Alkan, S.
    Vollmer, M.
    Krooss, P.
    Niendorf, T.
    Sehitoglu, H.
    SHAPE MEMORY AND SUPERELASTICITY, 2019, 5 (03) : 263 - 277
  • [9] Superelastic cycling and room temperature recovery of Ti74Nb26 shape memory alloy
    Ma, J.
    Karaman, I.
    Maier, H. J.
    Chumlyakov, Y. I.
    ACTA MATERIALIA, 2010, 58 (06) : 2216 - 2224
  • [10] The Influence of Thermomechanical Treatment on the Strain Behavior of the Fe-Ni-Co-Ti Ferromagnetic Alloy Nanocomposite with Shape Memory Effect
    Titenko, A. N.
    Demchenko, L. D.
    Babanli, M. B.
    Kozlova, L. Ye.
    Huseynov, S. S.
    POWDER METALLURGY AND METAL CERAMICS, 2020, 59 (5-6) : 271 - 281