Fast identification and susceptibility determination of E. coli isolated directly from patients' urine using infrared-spectroscopy and machine learning

被引:11
作者
Abu-Aqil, George [1 ]
Suleiman, Manal [1 ]
Sharaha, Uraib [1 ]
Riesenberg, Klaris [2 ]
Lapidot, Itshak [3 ]
Huleihel, Mahmoud [1 ]
Salman, Ahmad [4 ]
机构
[1] Bengurion Univ Negev, Fac Hlth Sci, Dept Microbiol Immunol & Genet, IL-84105 Beer Sheva, Israel
[2] Soroka Univ, Med Ctr, Microbiol Lab, IL-84105 Beer Sheva, Israel
[3] Afeka Tel Aviv Acad, ACLP Afeka Ctr Language Proc, Dept Elect & Elect Engn, Coll Engn, IL-69107 Tel Aviv, Israel
[4] Shamoon Coll Engn, SCE, Dept Phys, IL-84100 Beer Sheva, Israel
关键词
Bacteria; Urinary tract infections (UTIs); E; coli; Antibiotic; Bacterial susceptibility to antimicrobials; Infrared spectroscopy; Machine learning; INADEQUATE ANTIMICROBIAL TREATMENT; ESCHERICHIA-COLI; ANTIBIOTIC-RESISTANCE; MOLECULAR-MECHANISMS; IR SPECTROSCOPY; BACTERIA; DIFFERENTIATION; INFECTIONS; CRISIS; FUNGI;
D O I
10.1016/j.saa.2022.121909
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
For effective treatment, it is crucial to identify the infecting bacterium at the species level and to determine its antimicrobial susceptibility. This is especially true now, when numerous bacteria have developed multidrug resistance to most commonly used antibiotics. Currently used methods need similar to 48 h to identify a bacterium and determine its susceptibility to specific antibiotics. This study reports the potential of using infrared spectroscopy with machine learning algorithms to identify E. coli isolated directly from patients' urine while simultaneously determining its susceptibility to antibiotics within similar to 40 min after receiving the patient's urine sample. For this goal, 1,765 E. coli isolates purified directly from urine samples were collected from patients with urinary tract infections (UTIs). After collection, the samples were tested by infrared microscopy and analyzed by machine learning. We achieved success rates of similar to 96% in isolate level identification and similar to 84% in susceptibility determination.
引用
收藏
页数:9
相关论文
共 68 条
[11]   Detection of Escherichia coli O157:H7 and Salmonella typhimurium using filtration followed by Fourier-transform infrared spectroscopy [J].
Burgula, Y. ;
Khali, D. ;
Kim, S. ;
Krishnan, S. S. ;
Cousin, M. A. ;
Gore, J. P. ;
Reuhs, B. L. ;
Mauer, L. J. .
JOURNAL OF FOOD PROTECTION, 2006, 69 (08) :1777-1784
[12]   Meeting the challenge of antibiotic resistance [J].
Cars, Otto ;
Hogberg, Liselotte Diaz ;
Murray, Mary ;
Nordberg, Olle ;
Sivaraman, Satya ;
Lundborg, Cecilia Stalsby ;
So, Anthony D. ;
Tomson, Goran .
BMJ-BRITISH MEDICAL JOURNAL, 2008, 337 (7672) :a1438
[13]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[14]   The antibiotic crisis: charting Australia's path towards least resistance [J].
Coxeter, Peter ;
Looke, David ;
Hoffmann, Tammy ;
Lowe, John ;
Del Mar, Chris .
AUSTRALIAN AND NEW ZEALAND JOURNAL OF PUBLIC HEALTH, 2013, 37 (05) :403-404
[15]  
Daniels Ron, 2012, Emerg Nurse, V20, P11
[16]   CLINICAL IMPACT OF RAPID IN-VITRO SUSCEPTIBILITY TESTING AND BACTERIAL IDENTIFICATION [J].
DOERN, GV ;
VAUTOUR, R ;
GAUDET, M ;
LEVY, B .
JOURNAL OF CLINICAL MICROBIOLOGY, 1994, 32 (07) :1757-1762
[17]  
Duda R. O., 2001, Pattern Classification
[18]   Assessment of Global Incidence and Mortality of Hospital-treated Sepsis [J].
Fleischmann, Carolin ;
Scherag, Andre ;
Adhikari, Neill K. J. ;
Hartog, Christiane S. ;
Tsaganos, Thomas ;
Schlattmann, Peter ;
Angus, Derek C. ;
Reinhart, Konrad .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2016, 193 (03) :259-272
[19]   Urinary tract infections: epidemiology, mechanisms of infection and treatment options [J].
Flores-Mireles, Ana L. ;
Walker, Jennifer N. ;
Caparon, Michael ;
Hultgren, Scott J. .
NATURE REVIEWS MICROBIOLOGY, 2015, 13 (05) :269-284
[20]   Urinary Tract Infection Syndromes Occurrence, Recurrence, Bacteriology, Risk Factors, and Disease Burden [J].
Foxman, Betsy .
INFECTIOUS DISEASE CLINICS OF NORTH AMERICA, 2014, 28 (01) :1-+