Performance of Artificial Intelligence-Aided Diagnosis System for Clinically Significant Prostate Cancer with MRI: A Diagnostic Comparison Study

被引:13
作者
Jiang, Ke-Wen [1 ,2 ]
Song, Yang [3 ]
Hou, Ying [1 ,2 ]
Zhi, Rui [1 ,2 ]
Zhang, Jing [1 ,2 ]
Bao, Mei-Ling [4 ]
Li, Hai [4 ]
Yan, Xu [5 ]
Xi, Wei [3 ]
Zhang, Cheng-Xiu [3 ]
Yao, Ye-Feng [3 ]
Yang, Guang [3 ]
Zhang, Yu-Dong [1 ,2 ]
机构
[1] Nanjing Med Univ, Dept Radiol, Affiliated Hosp 1, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Med Univ, AI Imaging Lab, Med Imaging Coll, Nanjing, Jiangsu, Peoples R China
[3] East China Normal Univ, Shanghai Key Lab Magnet Resonance, Shanghai, Peoples R China
[4] Nanjing Med Univ, Dept Pathol, Affiliated Hosp 1, Nanjing, Jiangsu, Peoples R China
[5] Siemens Healthcare, MR Sci Mkt, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
clinically significant prostate cancer; artificial intelligence; deep learning; biparametric MRI; the Prostate Imaging Reporting and Data System; RESONANCE; ACCURACY; BIOPSY; MEN;
D O I
10.1002/jmri.28427
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background The high level of expertise required for accurate interpretation of prostate MRI. Purpose To develop and test an artificial intelligence (AI) system for diagnosis of clinically significant prostate cancer (CsPC) with MRI. Study Type Retrospective. Subjects One thousand two hundred thirty patients from derivation cohort between Jan 2012 and Oct 2019, and 169 patients from a publicly available data (U-Net: 423 for training/validation and 49 for test and TrumpeNet: 820 for training/validation and 579 for test). Field Strength/Sequence 3.0T/scanners, T-2-weighted imaging (T2WI), diffusion-weighted imaging, and apparent diffusion coefficient map. Assessment Close-loop AI system was trained with an Unet for prostate segmentation and a TrumpetNet for CsPC detection. Performance of AI was tested in 410 internal and 169 external sets against 24 radiologists categorizing into junior, general and subspecialist group. Gleason score >6 was identified as CsPC at pathology. Statistical Tests Area under the receiver operating characteristic curve (AUC-ROC); Delong test; Meta-regression I-2 analysis. Results In average, for internal test, AI had lower AUC-ROC than subspecialists (0.85 vs. 0.92, P < 0.05), and was comparable to junior (0.84, P = 0.76) and general group (0.86, P = 0.35). For external test, both AI (0.86) and subspecialist (0.86) had higher AUC than junior (0.80, P < 0.05) and general reader (0.83, P < 0.05). In individual, it revealed moderate diagnostic heterogeneity in 24 readers (Mantel-Haenszel I-2 = 56.8%, P < 0.01), and AI outperformed 54.2% (13/24) of readers in summary ROC analysis. In multivariate test, Gleason score, zonal location, PI-RADS score and lesion size significantly impacted the accuracy of AI; while effect of data source, MR device and parameter settings on AI performance is insignificant (P > 0.05). Data Conclusion Our AI system can match and to some case exceed clinicians for the diagnosis of CsPC with prostate MRI. Evidence Level 3 Technical Efficacy Stage 2
引用
收藏
页码:1352 / 1364
页数:13
相关论文
共 50 条
[41]   Diagnostic performance of prostate cancer antigen 3 and the Prostate Health Index in detecting overall and clinically significant prostate cancer in men at first biopsy: A meta-analysis [J].
Jia, Wei ;
Wu, Bo ;
Shao, Yuan ;
Cao, Xiaoming ;
Wang, Dongwen .
INTERNATIONAL JOURNAL OF UROLOGY, 2021, 28 (03) :315-325
[42]   Comparing and Combining Artificial Intelligence and Spectral/Statistical Approaches for Elevating Prostate Cancer Assessment in a Biparametric MRI: A Pilot Study [J].
Mayer, Rulon ;
Yuan, Yuan ;
Udupa, Jayaram ;
Turkbey, Baris ;
Choyke, Peter ;
Han, Dong ;
Lin, Haibo ;
Simone II, Charles B. .
DIAGNOSTICS, 2025, 15 (05)
[43]   Predictors of Clinically Significant Prostate Cancer: A Comparative Study of PSA, PSA Density, and MRI Parameters [J].
Coskun, Mehmet ;
Donmez, Emine Merve Horoz ;
Akin, Yigit ;
Ocal, Irfan ;
Gumus, Cesur ;
Uluc, Muhsin Engin .
ISTANBUL MEDICAL JOURNAL, 2021, 22 (01) :31-37
[44]   Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Diagnosis for Breast Microcalcification on Mammography [J].
Do, Yoon Ah ;
Jang, Mijung ;
Yun, Bo La ;
Shin, Sung Ui ;
Kim, Bohyoung ;
Kim, Sun Mi .
DIAGNOSTICS, 2021, 11 (08)
[45]   A Prostate Imaging-Reporting and Data System version 2.1-based predictive model for clinically significant prostate cancer diagnosis [J].
Gelikman, David G. ;
Azar, William S. ;
Yilmaz, Enis C. ;
Lin, Yue ;
Shumaker, Luke A. ;
Fang, Andrew M. ;
Harmon, Stephanie A. ;
Huang, Erich P. ;
Parikh, Sahil H. ;
Hyman, Jason A. ;
Schuppe, Kyle ;
Nix, Jeffrey W. ;
Galgano, Samuel J. ;
Merino, Maria J. ;
Choyke, Peter L. ;
Gurram, Sandeep ;
Wood, Bradford J. ;
Rais-Bahrami, Soroush ;
Pinto, Peter A. ;
Turkbey, Baris .
BJU INTERNATIONAL, 2025, 135 (05) :751-759
[46]   PSA density is complementary to prostate MP-MRI PI-RADS scoring system for risk stratification of clinically significant prostate cancer [J].
Frisbie, James W. ;
Van Besien, Alexa J. ;
Lee, Adrianna ;
Xu, Linhan ;
Wang, Shu ;
Choksi, Ankur ;
Afzal, M. Adil ;
Naslund, Michael J. ;
Lane, Barton ;
Wong, Jade ;
Wnorowski, Amelia ;
Siddiqui, Mohummad Minhaj .
PROSTATE CANCER AND PROSTATIC DISEASES, 2023, 26 (02) :347-352
[47]   Classification of Clinically Significant Prostate Cancer on Multi-Parametric MRI: A Validation Study Comparing Deep Learning and Radiomics [J].
Castillo T., Jose M. M. ;
Arif, Muhammad ;
Starmans, Martijn P. A. ;
Niessen, Wiro J. ;
Bangma, Chris H. ;
Schoots, Ivo G. ;
Veenland, Jifke F. .
CANCERS, 2022, 14 (01)
[48]   MRI-based Deep Learning Algorithm for Assisting Clinically Significant Prostate Cancer Detection: A Bicenter Prospective Study [J].
Lee, Young Joon ;
Moon, Hyong Woo ;
Choi, Moon Hyung ;
Jung, Seung Eun ;
Park, Yong Hyun ;
Lee, Ji Youl ;
Kim, Dong Hwan ;
Rha, Sung Eun ;
Kim, Sang Hoon ;
Lee, Kyu Won ;
Choi, Yeong-Jin ;
Lee, Young Sub ;
Lee, Woojoo ;
Lee, Seungjae ;
Grimm, Robert ;
von Busch, Heinrich ;
Han, Dongyeob ;
Lou, Bin ;
Kamen, Ali .
RADIOLOGY, 2025, 314 (03)
[49]   Diagnostic Utility of Artificial Intelligence-assisted Transperineal Biopsy Planning in Prostate Cancer Suspected Men: A Prospective Cohort Study [J].
Guenzel, Karsten ;
Baumgaertner, Georg Lukas ;
Padhani, Anwar R. ;
Luckau, Johannes ;
Lock, Uwe Carsten ;
Ozimek, Tomasz ;
Heinrich, Stefan ;
Schlegel, Jakob ;
Busch, Jonas ;
Magheli, Ahmed ;
Struck, Julian ;
Borgmann, Hendrik ;
Penzkofer, Tobias ;
Hamm, Bernd ;
Hinz, Stefan ;
Hamm, Charlie Alexander .
EUROPEAN UROLOGY FOCUS, 2024, 10 (05) :833-842
[50]   Combining prostate-specific antigen density with prostate imaging reporting and data system score version 2.1 to improve detection of clinically significant prostate cancer: A retrospective study [J].
Lei, Yin ;
Li, Tian Jie ;
Gu, Peng ;
Yang, Yu Kun ;
Zhao, Lei ;
Gao, Chao ;
Hu, Juan ;
Liu, Xiao Dong .
FRONTIERS IN ONCOLOGY, 2022, 12