Fourier analysis on robustness of graph convolutional neural networks for skeleton-based action recognition

被引:2
|
作者
Tanaka, Nariki [1 ]
Kera, Hiroshi [1 ]
Kawamoto, Kazuhiko [1 ]
机构
[1] Chiba Univ, 1-33 Yayoicho,Inage Ku, Chiba 2638522, Japan
关键词
Skeleton-based action recognition; Graph convolutional neural network; Adversarial robustness; Fourier analysis;
D O I
10.1016/j.cviu.2024.103936
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using Fourier analysis, we explore the robustness and vulnerability of graph convolutional neural networks (GCNs) for skeleton-based action recognition. We adopt a joint Fourier transform (JFT), a combination of the graph Fourier transform (GFT) and the discrete Fourier transform (DFT), to examine the robustness of adversarially-trained GCNs against adversarial attacks and common corruptions. Experimental results with the NTU RGB+D dataset reveal that adversarial training does not introduce a robustness trade -off between adversarial attacks and low-frequency perturbations, which typically occurs during image classification based on convolutional neural networks. This finding indicates that adversarial training is a practical approach to enhancing robustness against adversarial attacks and common corruptions in skeleton-based action recognition. Furthermore, we find that the Fourier approach cannot explain vulnerability against skeletal part occlusion corruption, which highlights its limitations. These findings extend our understanding of the robustness of GCNs, potentially guiding the development of more robust learning methods for skeleton-based action recognition.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Fourier analysis on robustness of graph convolutional neural networks for skeleton-based action recognition
    Tanaka, Nariki
    Kera, Hiroshi
    Kawamoto, Kazuhiko
    Computer Vision and Image Understanding, 2024, 240
  • [2] Graph Edge Convolutional Neural Networks for Skeleton-Based Action Recognition
    Zhang, Xikun
    Xu, Chang
    Tian, Xinmei
    Tao, Dacheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (08) : 3047 - 3060
  • [3] SKELETON-BASED ACTION RECOGNITION WITH CONVOLUTIONAL NEURAL NETWORKS
    Li, Chao
    Zhong, Qiaoyong
    Xie, Di
    Pu, Shiliang
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2017,
  • [4] Recurrent graph convolutional networks for skeleton-based action recognition
    Zhu, Guangming
    Yang, Lu
    Zhang, Liang
    Shen, Peiyi
    Song, Juan
    Proceedings - International Conference on Pattern Recognition, 2020, : 1352 - 1359
  • [5] Recurrent Graph Convolutional Networks for Skeleton-based Action Recognition
    Zhu, Guangming
    Yang, Lu
    Zhang, Liang
    Shen, Peiyi
    Song, Juan
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 1352 - 1359
  • [6] Skeleton-Based Action Recognition With Gated Convolutional Neural Networks
    Cao, Congqi
    Lan, Cuiling
    Zhang, Yifan
    Zeng, Wenjun
    Lu, Hanqing
    Zhang, Yanning
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (11) : 3247 - 3257
  • [7] Skeleton-Based Action Recognition with Directed Graph Neural Networks
    Shi, Lei
    Zhang, Yifan
    Cheng, Jian
    Lu, Hanqing
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7904 - 7913
  • [8] DeGCN: Deformable Graph Convolutional Networks for Skeleton-Based Action Recognition
    Myung, Woomin
    Su, Nan
    Xue, Jing-Hao
    Wang, Guijin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 2477 - 2490
  • [9] Temporal segment graph convolutional networks for skeleton-based action recognition
    Ding, Chongyang
    Wen, Shan
    Ding, Wenwen
    Liu, Kai
    Belyaev, Evgeny
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 110
  • [10] Hierarchically Decomposed Graph Convolutional Networks for Skeleton-Based Action Recognition
    Lee, Jungho
    Lee, Minhyeok
    Lee, Dogyoon
    Lee, Sangyoun
    Proceedings of the IEEE International Conference on Computer Vision, 2023, : 10410 - 10419