Enhanced activity and SO2 tolerance in low-temperature NH3-SCR of NOx over MnCr catalyst by hetero-oxide modification

被引:4
|
作者
Liu, Mengyu [1 ,2 ]
Wang, Qi [1 ]
Zhao, Yingping [1 ,2 ]
Zhao, Baogang [1 ]
Li, Hao [1 ,2 ]
Sun, Tianjun [1 ]
机构
[1] Dalian Maritime Univ, Marine Engn Coll, Dalian 116026, Peoples R China
[2] Dalian Maritime Univ, Environm Sci & Engn Coll, Dalian 116026, Peoples R China
来源
关键词
Marine Emission; Manganese Oxide; Doping; SCR; Sulfur; -Resistant; REDUCTION; NH3; RESISTANCE; SCR; PERFORMANCE; SELECTIVITY; MECHANISM; REMOVAL; CARBON; CERIUM;
D O I
10.1016/j.jece.2023.111508
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Developing NH3-SCR catalysts with high humid-SO2 resistance is of great significance for NOx emission control of the two-stroke low-speed ship. For further optimizing the catalytic performance and SO2 tolerance of Mn-Cr catalyst, Al2O3, CeO2 and Nb2O5 were doped by coprecipitation. Through structural analyses, it was determined that the incorporation of Al and Ce effectively increased the surface area of the catalysts and promoted the dispersion of various components throughout them. Moreover, the introduction of Nb led to the formation of secondary particle aggregates, ultimately strengthening the structural stability of the catalysts. The catalytic performance, N2 selectivity and SO2 tolerance of the co-doped catalyst containing Al2O3, CeO2 and Nb2O5 showed remarkable improvement. The NOx conversion of MnCrCeAlNb was exceeding 90% and N2 selectivity above 97% at 175-300 degrees C and remained around 88% after 10 h reaction under 150 ppm SO2 and 10 vol% H2O at 225 degrees C. Co-doping Al2O3, CeO2 and Nb2O5 greatly improved the reducibility and significantly increased the number of surface acid sites. And the XPS results demonstrated that the addition of niobium enhanced the redox properties and adsorbed oxygen through the electron transfer between Mn4+ and Cr3+, resulting in a significant promotion in the NH3-SCR performance and humid-SO2 tolerance. In particular, the cause of the excellent humid-SO2 tolerance of the MnCrCeAlNb was investigated by TG and FT-IR, demonstrating that the Nb addition significantly reduce the formation of (NH4)2SO4, NH4HSO4 and sulfate on the surface of MnCr catalyst. These results suggested that the doping of Hetero-oxide greatly enhanced the low-temperature NH3-SCR and SO2 tolerance of Mn-Cr based catalysts.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Effect of calcination temperature on low-temperature NH3-SCR activity and the resistance of SO2 with or without H2O over Fe-Mn-Zr catalyst
    Fang, Ningjie
    Guo, Jiaxiu
    Shu, Song
    Luo, Hongdi
    Li, Jianjun
    Chu, Yinghao
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2018, 93 : 277 - 288
  • [22] Influence of surface active groups on SO2 resistance of birnessite for low-temperature NH3-SCR
    Fang, Xue
    Liu, Yongjun
    Chen, Lingzhu
    Cheng, Yan
    CHEMICAL ENGINEERING JOURNAL, 2020, 399
  • [23] Influence of surface active groups on SO2 resistance of birnessite for low-temperature NH3-SCR
    Fang, Xue
    Liu, Yongjun
    Chen, Lingzhu
    Cheng, Yan
    Chemical Engineering Journal, 2020, 399
  • [24] Unveiling the SO2 Resistance Mechanism of a Nanostructured SiO2(x)@Mn Catalyst for Low-Temperature NH3-SCR of NO
    Wu, Hongli
    Liu, Weizao
    Jiang, Xiaoyong
    Liang, Ya
    Yang, Chen
    Cao, Jun
    Liu, Qingcai
    INORGANIC CHEMISTRY, 2023, 62 (25) : 9971 - 9982
  • [25] SO2 promotion in NH3-SCR reaction over V2O5/SiC catalyst at low temperature
    Bai, Shuli
    Wang, Zibo
    Li, Huanying
    Xu, Xu
    Liu, Minchao
    FUEL, 2017, 194 : 36 - 41
  • [26] Improvement of the activity and SO2 tolerance of Sb-modified Mn/PG catalysts for NH3-SCR at a low temperature
    Xianlong Zhang
    Shuangshuang Lv
    Xincheng Zhang
    Kesong Xiao
    Xueping Wu
    Journal of Environmental Sciences, 2021, (03) : 1 - 15
  • [27] Low-temperature Denitration Mechanism of NH3-SCR over Fe/AC Catalyst
    Yang, Zhengyu
    Huang, Bangfu
    Zhang, Guifang
    Dai, Meng
    Wen, Zhenjing
    Li, Wanjun
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2023, 38 (03): : 475 - 484
  • [28] Improvement of the activity and SO2 tolerance of Sb-modified Mn/PG catalysts for NH3-SCR at a low temperature
    Zhang, Xianlong
    Lv, Shuangshuang
    Zhang, Xincheng
    Xiao, Kesong
    Wu, Xueping
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2021, 101 : 1 - 15
  • [29] Low-temperature Denitration Mechanism of NH3-SCR over Fe/AC Catalyst
    杨征宇
    黄帮福
    ZHANG Guifang
    DAI Meng
    WEN Zhenjing
    LI Wanjun
    Journal of Wuhan University of Technology(Materials Science), 2023, 38 (03) : 475 - 484
  • [30] Physico-Chemical Property and Catalytic Activity of a CeO2-Doped MnOx-TiO2 Catalyst with SO2 Resistance for Low-Temperature NH3-SCR of NOx
    Shin, Byeongkil
    Chung, Ho Hwan
    Cha, Jin-Sun
    Shin, Min-Chul
    Lee, Heesoo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (05) : 4370 - 4376