Deterministic or probabilistic?- A survey on Byzantine fault tolerant state machine replication

被引:4
作者
Freitas, Tadeu [1 ,2 ]
Soares, Joao [1 ,2 ]
Correia, Manuel E. [1 ,2 ]
Martins, Rolando [1 ,2 ]
机构
[1] Univ Porto, Fac Ciencias, Dept Ciencias Comp, Rua Campo Alegre S-N, Porto, Portugal
[2] CRACS INESC TEC, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
关键词
Byzantine fault tolerance; State machine replication; Fault tolerance; Deterministic consensus; Probabilistic consensus; Asynchronous distributed systems; Security; CONSENSUS; SIGNATURES; BROADCAST; PROTOCOLS; TIME;
D O I
10.1016/j.cose.2023.103200
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Byzantine Fault tolerant (BFT) protocols are implemented to guarantee the correct system/application behavior even in the presence of arbitrary faults (i.e., Byzantine faults). Byzantine Fault tolerant State Machine Replication (BFT-SMR) is a known software solution for masking arbitrary faults and malicious attacks (Liu et al., 2020). In this survey, we present and discuss relevant BFT-SMR protocols, focusing on deterministic and probabilistic approaches. The main purpose of this paper is to discuss the characteristics of proposed works for each approach, as well as identify the trade-offs for each different approach.& COPY; 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:30
相关论文
共 87 条
[1]   Asymptotically Optimal Validated Asynchronous Byzantine Agreement [J].
Abraham, Ittai ;
Malkhi, Dahlia ;
Spiegelman, Alexander .
PROCEEDINGS OF THE 2019 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '19), 2019, :337-346
[2]  
AndrewMiller Yu Xia, 2016, P 2016 ACM SIGSAC C, P31, DOI [10.1145/2976749.2978399, DOI 10.1145/2976749.2978399]
[3]  
[Anonymous], 2010, P 2010 USENIX C USEN, DOI DOI 10.5555/1855840.1855851
[4]  
[Anonymous], 2012, P 10 S OP SYST DES I
[5]  
Avarikioti Z, 2021, Arxiv, DOI arXiv:2009.02235
[6]   THE N-VERSION APPROACH TO FAULT-TOLERANT SOFTWARE [J].
AVIZIENIS, A .
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 1985, 11 (12) :1491-1501
[7]  
Bachmann Paul., 1894, Zahlentheorie: th. Die analytische Zahlentheorie (1894), V2
[8]   Simple and efficient threshold cryptosystem from the Gap Diffie-Hellman group [J].
Baek, J ;
Zheng, YL .
GLOBECOM'03: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-7, 2003, :1491-1495
[9]  
Behl J., 2017, A highly parallelizable protocol for hybrid fault-tolerant service replication
[10]   Hybrids on Steroids: SGX-Based High Performance BFT [J].
Behl, Johannes ;
Distler, Tobias ;
Kapitza, Rudiger .
PROCEEDINGS OF THE TWELFTH EUROPEAN CONFERENCE ON COMPUTER SYSTEMS (EUROSYS 2017), 2017, :222-237